DCS 500 Thyristor Power Converter for DC Drive Systems 25 to 5150 A

Software Description DCS 500B

DC Drives 25 to 5150 A SOFTWARE DESCRIPTION for version 21.233

Code: 3ADW 000078 R0301 Rev C
SWDB_E_C.DOC
EFFECTIVE: Aug. 1st, 2001
SUPERSEDES: Rev B Dec. 2nd, 1998

Contents

- General 1
Software Overview 2
Parameter Sets 2
Saving the program 2
Identification of the Converter Software version 3
Identification of the Field Exciter Software version 3
Function Blocks 4
Digital and Analog I/O 5
Digital Inputs 5
Digital Outputs 5
Analog Inputs 6
Analog Outputs 9
- Settings and commissioning functions 11
SETTINGS function block 11
MANUAL TUNING function block 12
Autotuning 13
- Drive Logic 16
DRIVE LOGIC function block 16
Closing Control of the Contactors 16
Opening Control of the Contactors 17
Run Control 17
Stop Control 18
Reset the drive fault 20
Change between parameter set1 and set2 21
Local/Remote 21
- Speed feedback and speed reference handling 23
Speed scaling to software 23
SPEED_MEASURMENT function block 23
Selection of the speed actual measurement 24
Incremental encoder 24
Analogue Tacho Generator 24
Polarity 24
Scaling of the actual voltage to control 25
Application example 25
Actual speed based on EMF 25
Calculation of speed from the EMF 25
Filtering of the actual speed 25
CONST_REF function block 26
SOFTPOT function block 26
Reference increment and decrement 26
Limitation 26
REF_SEL function block 26
Changing of the speed direction of rotation 27
RAMP GENERATOR function block 27
Local / Remote Speed Reference 27
Holding of the reference 27
Ramp Function in Emergency Stop 27
Selecting of the Ramp function 28
Limitation of the reference 28
Passing of the RAMP function 28
Output follows the speed actual 28
Reset the output 28
Acceleration compensation 28
- Speed Control 30
REFSUM_2 function block 30
SPEED ERROR function block 30
Speed Step for testing 30
Error value filter 30
Window Control Principle 31
Application example for Window Control 31
Enabling the Window Control 31
Determining the Window Size 31
Output connection points 31
SPEED_CONTROL function block 32
Gain and Integral time settings 32
The P-gain reduction 32
Output Limitation 32
Integral part Setting during the Control Mode Changing 33
Principle of Drooping 33
Drooping Adjustment 33
SPEED_MONITOR function block 33
Speed Actual Comparators 34
Overspeed limit 34
Speed Measurement Fault 34
Stall Protection 34
- Torque Reference 37
TORQ_REF_SELECTION function block 37
Torque Reference Scaling 37
Load sharing in Master / Follower Application 37
Output Limitation 37
TORQUE/CURRENT LIMITATION function block 37
Current Limitations 37
Torque Limits 38
Speed Dependant Current Limitation 38
Gear Backlash Compensation 39
- Current Control 42
TORQ_REF_HANDLING function block 42
Torque Reference Selection 42
Torque Step 43
Output Limitation and its Indication 43
CURRENT CONTROL function block 43
Torque / Current Reference Selection 43
Current Response Test 43
Regulation Blocking 43
Armature Current Scaling 43
Current Reference Rise Time 43
Current Reference Limitation 43
Current Difference Alarm 43
Pl- Regulation 44
Scaling of the gain KP 44
Scaling of the Time Constant KI 44
Discontinuous Current Point 44
Tuning of Current Regulator 45
Firing Angle Limitation 45
Additional Commutation Reserve DXN 45
Example 45
Network reactance 46
Short Circuit Current 46
400 A load 46
600 A load 46
DXN 46
Firing angle example 47
Note. 47
Status Indication for Bridge 47
- Field Excitation 49
Selection of the Field Exciter 50
Field Exciter Status 50
No Field Acknowledge Selected 50
Internal Diode Field Exciter SDCS-FEX-1 50
Internal Field Exciter SDCS-FEX-2 51
Acknowledge 51
External Field Exciter DCF503-0050 51
External Field Exciter DCF504-0050 51
AI/DI Connected Field Exciters 51
Acknowledge Selection 51
Use of the Analog Input Channel 52
Calculation Example 52
Two Field Exciters at the same time 52
Field Current Settings 52
Free Wheeling Function 53
Trigger Point Setting of the Free Feeling Function 53
Filter for Actual Field Current 53
Field Current Controller 54
Field Reversal 54
Activating 55
Field direction change hysteresis 55
Force field direction 55
Field monitoring when changing direction 55
Opti-Torque 56
Selection of OPTI-TORQUE 57
Field current reduction using torque reference 57
Field monitoring when OPTI-TORQUE changes the field direction 58
Field current / FLUX linearisation 58
Saturation 59
Linearisation procedure 59
Field reduction when at stand-still 59
Field heating when in "OFF"-state 60
EMF_CONTROL function block 60
The Purpose of EMF Controller 60
Selection of EMF-control 61
Resistive and inductive voltage drop 61
Field weakening area 61
FLUX reference handling 62
Flux Reference in Emergency Stop. 62
EMF reference handling 62
PI - controller. 62
EMF-error value filter 63
PI -gain value scaling 63
PI - controller output limitation 63
- Protections 65
CONVERTER_PROTECTION function block 65
Network voltage measurement. 65
400 V supply 65
Network undervoltage 65
Network overvoltage 65
Overcurrent 65
Over -temperature 66
Earth Fault 66
MOTOR_1_PROTECTION function block 67
MOTOR_2_PROTECTION function block 67
Measured Motor Temperature 67
Measurement selection 67
Alarm and tripping limits 68
Motor Protection by means of the switch. 69
Motor thermal model 69
Preloading 71
Thermal model selection 71
Alarm and tripping limits 71
Thermal time constant. 72
- Brake Control 76
Safety 76
BRAKE_CONTROL function block 76
Holding Torque 76
Brake Release 76
Minimum Speed Indication 76
Brake Acknowledge 76
Start Delay 77
Stop Delay 77
Function 77
TREF OUT 79
TREF ENABLE 79
DECEL CMND 79
LIFT BRAKE 79
BRAKE RUN 79
- Extended inputs / outputs 81
- Serial link via FIELDBUS 83
- 12 pulse configuration 85
- Data Logger 87
DATA LOGGER function block 87
- User Event 90
- Diagnostics 92
FAULT HANDLING function block 92
Fault and Alarm signals 92
Fault Word bits 92
Alarm Word bits 92
Fault Logger 92
CONSTANTS function block 93
Logical constants 93
Numerical constants 93
FREE_SIGNALS function block 93
Appendix A Pin and Parameter list A1

Functional Software Description

- General

The DC drive named DCS 500B is equipped with a SDCS-CON-2 microprocessor board. The original version was called DCS 500 and was equipped with a SDCS-CON-1 board.

The DCS 500B has a MODBUS communication bus connection, which is a common bus protocol for ABB Drives products for the panel link.

The DCS 500B drive can be controlled by means of digital and analog inputs or via the CDP 312 Control Panel.

The DCS 500B software contains the function blocks of a standard application program and function blocks which can be connected to each other to form more advanced application programs. A standard program is designed so that it contains numerous functions, is flexible and suitable for most of the basic drive applications.
Typical application areas for DCS 500B are:

- Winder control
- Master Follower
- Positioning Control
- Ski Lifts
- Battery Charging
- Cranes

Figure 1 DCS 500B armature control

Software Overview

Parameter Sets
Two parameter sets are available for two different applications in a drive.
Example: A digital input can be used to select 1 of 2 parameter sets. Parameter set 1 is for motor set 1 and parameter set 2 is for motor set 2. A digital output is used to control external hardware which selects the actual motor 1 or motor 2 connection.

Figure 2 Two different applications in one drive
Saving the pro- The converter program is stored in a FPROM memory circuit gram
(D33).The parameters for the converter and the field exciter are stored in one FPROM memory circuit (D35). The circuits are installed on the control board SCDS-CON-2.

Identification of the Converter Software version

Parameter values will be saved by means of the parameter BACKUP STORE MODE (11202). When the action is finished after writing or reading of parameters the mode is changed to 0 [NONE].

BACKUPSTORE MODE:

0 = [NONE] no backup
1 = [SAVE MOT1 SET] save motor set 1 to FPROM memory.
2 = [SAVE MOT2 SET] save motor set 2 to FPROM memory.
3 = [FACTORY SET VALUE] default values are restored to the RAM memory
4 = [SELECT MOT1 SET] read motor set 1 from the FPROM memory
5 = [SELECT MOT2 SET]

The version of the software can be identified in two ways:

- software version is printed on the label which is located on the memory circuits D33.
- the signal CNT SW VERSION (11218) indicates the converter program version.

VERSION
(226 = 1. version SDCS-CON-2)
(227 = 2. version)
DCS500

Figure 3 Identification labels of memory circuit D33

Identification of the Field Exciter Software version

If a field exciter module SDCS-FEX-2 or DCF 503/4 (SDCS-FEX-3x) is used the version of the field exciter software can be identified in two ways:

- software version is printed on a label on the micro controller of the field supply unit SDCS-FEX-2 or DCF 503/4
- the signal FEXC1 SW VERSION (11220) indicates the converter program version.
when two field exciter units are installed in the drive, the program version of the second unit can be read from signal FEXC2 SW VERSION (11221).
All the parameters of two-phase field exciter units are stored in the FPROM memory circuit (D35) of the converter.

Function Blocks

DCS 500B control program is made completely by function blocks. The program can be modified with the control panel CDP312 or a PC-based tool program CMT/DCS500B. Every function block, used in the control program, has a structure similar to the one shown in figure 4. Additional function blocks exist in every converter. They can be used in the same way as the ones, shown in this document. For more information, please see the APPLICATION BLOCKS manual.

If additional function blocks are used, the converter should be labeled with a sticker indicating the type of application by any code or plain text.

Figure 4 Structure of a Standard Program Function Block
All function block inputs characterized by a 3 or 4 digit number with no Px box (Px box displays values either in integer, relative or physical; see below) on the left hand side can be connected to a function block output. Inputs can only be connected to each other via a function block output (see next figure). Connections will be made by selecting the input and using the number of the output as a "parameter" value. Connecting more than one output to one input is not allowed!
All the values shown within the Px boxes within this document are given in Integer (micro processor) values. The scaling is according to the PARAMETER LIST. Using the CMT/DCS500 PC tool, the display can be altered between Integer, Relative (e.g. 78\%) and Physical (1432 rpm). The CDP 312 panel will always show physical numbers.

Figure 5 Function block connection.

Digital and Analog I/O

Digital Inputs

Digital Outputs There are eight digital outputs and the connections are made to the SDCS-CON-2 or SDCS-IOB-2x boards.

Figure 7 Digital Output Function Block

Analog Inputs

Signal Type Selection for Inputs

Figure 8 Analog Input Function Block
Maximum number of analog inputs is seven. The first five channels, AITAC, AI1, AI2, Al3 and AI4, are available with the SDCS-CON-2 or SDCS-IOB-3 boards. The last two channels, AI5 and AI6, are connected by means of the SDCS-IOE-1 extension I/O board.

Analog inputs are scaled with parameters:
HIGH VALUE (1XX) = value in OUT+ (XXXXX) that corresponds to maximum input value (normally +10 V or +20 mA). and
LOW VALUE (1XX) = value in OUT+ (XXXXX) that corresponds to minimum input value (normally -10 V or +20 mA). If offset balancing is needed, the value of the HIGH and LOW VALUE has to be increased or decreased slightly.

Note. The temperature measurements are scaled internally in Al2 and AI3 (Ω or ${ }^{\circ} \mathrm{C}$). The parameters HIGH VALUE and LOW VALUE have no significance in that case.

The input signal type is defined by parameter CONV MODE (1XX). The following table shows all possible values for analog input signals in the DCS500B software.

Analog Input	Alx CONV MODE-parameter selection	Terminal boards \& settings:
AITAC	$\begin{aligned} 1= & -10 \ldots+10 \mathrm{~V} \\ & -20 \ldots+20 \mathrm{~mA} \end{aligned}$	IOB-3: - --- IOB-3: S1:1-2 connected
	$2=4 \ldots 20 \mathrm{~mA}$, unipolar	IOB-3: S1:1-2 connected
	$\begin{aligned} 3= & \text { Tacho generator voltage } \\ & -10 \mathrm{~V} \ldots+10 \mathrm{~V} \end{aligned}$	$\begin{aligned} \hline \text { CON-2: } & 3: 1-4: 90-270 \mathrm{~V} \\ & \times 3: 2-4: 30-90 \mathrm{~V} \\ & \times 3: 3-4: 0-30 \mathrm{~V} \end{aligned}$
Al1	$\begin{aligned} 1= & -10 \ldots+10 \mathrm{~V} \\ & -20 \ldots+20 \mathrm{~mA} \end{aligned}$	CON-2; IOB-3: ----CON-2: 500 2 connected X3:5-6 IOB-3: S1:3-4 connected
	$2=4 \ldots 20 \mathrm{~mA}$, unipolar	CON-2: 500 2 connected X3:5-6 IOB-3: S1:3-4 connected

Analog Input	Alx CONV MODE-parameter selection	Terminal boards \& settings:
Al2	$\begin{aligned} 1= & -10 \ldots+10 \mathrm{~V} \\ & -20 \ldots+20 \mathrm{~mA} \end{aligned}$	CON-2; IOB-3: ----CON-2: 500 connected X3:7-8 IOB-3: S1:5-6 connected
	$2=4 . .20 \mathrm{~mA}$, unipolar	CON-2: 500 2 connected X3:7-8 IOB-3: S1:5-6 connected
	3 = Motor temperature measurement $1 \times$ PT100; output scale: ${ }^{\circ} \mathrm{C}$	IOB-3: S5:3-4 (5 mA), gain=10
	$4=2 \times$ PT100; output scale: ${ }^{\circ} \mathrm{C}$	IOB-3: S5:3-4 (5 mA), gain =1
	$5=3 \times$ PT100; output scale: ${ }^{\circ} \mathrm{C}$	IOB-3: S5:3-4 (5 mA), gain =1
	6 = PTC; output scale: ohm (Ω)	IOB-3: S5:1-2 (1.5 mA), gain =1
	7 = PTC; output scale: ohm (Ω)	CON-2: S1:23-24 (+10V source)
Al3	$\begin{aligned} 1= & -10 \ldots+10 \mathrm{~V} \\ & -20 \ldots+20 \mathrm{~mA} \end{aligned}$	CON-2; IOB-3: ----CON-2: 500 connected X3:9-10 IOB-3: S1:7-8 connected
	$2=4 . .20 \mathrm{~mA}$, unipolar	CON-2: 500 connected X3:9-10 IOB-3: S1:7-8 connected
	3 = Motor temperature measurement $1 \times$ PT100; output scale: ${ }^{\circ} \mathrm{C}$	IOB-3: S5:3-4 (5 mA), gain=10
	$4=2 \times$ PT100; output scale: ${ }^{\circ} \mathrm{C}$	IOB-3: S5:3-4 (5 mA), gain =1
	$5=3 \times$ PT100; output scale: ${ }^{\circ} \mathrm{C}$	IOB-3: S5:3-4 (5 mA), gain =1
	6 = PTC; output scale: ohm (Ω)	IOB-3: S5:1-2 (1.5 mA), gain =1
AI4	$1=-10 \ldots+10 \mathrm{~V}$ $-20 . . .+20 \mathrm{~mA}$	CON-2: ---- IOB-3: S1:11-12 not connected S1:13-14 not connected CON-2: 500 connected X4:1-2 IOB-3: S1: 9-10 connected S1:11-12 not connected S1:13-14 not connected
	$2=4 \ldots 20 \mathrm{~mA}$, unipolar	CON-2: 500Ω connected X4:1-2 IOB-3: S1: 9-10 connected S1:11-12 not connected S1:13-14 not connected
	3 = Earth fault current measurement Output scale: A	IOB-3: S1:11-12 connected $13-14$ connected $9-10$ not connected Connection terminals: $X 3: 11-12$
$\begin{aligned} & \text { Al5 on } \\ & \text { SDCS-IOE-1 } \end{aligned}$	$\begin{aligned} & \hline 1=-10 \ldots+10 \mathrm{~V} \\ &-20 \ldots+20 \mathrm{~mA} \end{aligned}$	no action S1:3-4 connected
	$2=4 \ldots 20 \mathrm{~mA}$, unipolar	S1:3-4 connected
$\begin{aligned} & \text { Al6 on } \\ & \text { SDCS-IOE-1 } \end{aligned}$	$\begin{array}{r} \hline 1=-10 \ldots+10 \mathrm{~V} \\ -20 \ldots+20 \mathrm{~mA} \end{array}$	no action S2:3-4 connected
	$2=4 \ldots 20 \mathrm{~mA}$, unipolar	S2:3-4 connected

Analog input error codes can be seen from the ERR pin, if the hardware and software scalings are not compatible. Error codes are shown below.

Error Code	Text	Description
0	NO FAULT	No faults or CONV MODE $=0$
1	$1<4 \mathrm{~mA}$	CONV MODE $=2$ and l < 4 mA
2	NO IOB-1/IOB-3	No IOB-1 or IOB-3 board connected
3	WRONG IOB:	
	AITAC	Only IOB-2 board connected, CONV MODE $=1$ or 2 and IOB-3 is not connected CONV MODE $=3$ and IOB- 1 is not connected
	Al1	Only IOB-2 board connected
	AI2	Only IOB-2 board connected CONV MODE $=3,4,5,6$ and IOB-3 is not connected CONV MODE $=7$ and IOB- 1 is not connected
	AI3	Only IOB-2 board connected CONV MODE $=3,4,5,6$ and IOB-3 is not connected
	Al4	Only IOB-2 board connected CONV MODE $=3$ and IOB- 1 is not connected
4	LOW VAL.>HIGH VAL.	Low value > high value
5	NO IOE 1	Extension board not connected

EXAMPLE:
Rescaling, if reference is different to $+/-10 \mathrm{~V}$

A speed reference $0 \ldots+/-8 \mathrm{~V}$ is connected to analog input Al1:

- $\mathrm{OV}=$ corresponds to zero speed
- $\quad+/-8 \mathrm{~V}$ corresponds to max speed

The speed loop at the control program is scaled to 20000 equal to top speed. The value in rpm, the program uses is specified at parameter SPEED_SCALING (2103).

Parameters have to be set:

CONV MODE (104)	$=1$	(voltage signal)
HIGH VALUE (105)	$=25000$	(see below)
LOW VALUE (106)	$=-25000$	(see below)

If the reference is +4 V , the speed reference value at output of the Al1 block (10104) is 10000 .
general:
$P 10 x=\frac{10 \mathrm{~V}}{\text { max.reference }} \bullet 20000$

- don't forget the sign!
- reference values higher than 10 V can not be rescaled by the converter; the rescaling has to be done outside the converter
- references below $6,25 \mathrm{~V}$ cannot be rescaled, because of the high limit of the scaling parameters

Analog Outputs There are three analog output channels. Connections are made to either SDCS-CON-2 or SDCS-IOB-3 boards. The first two outputs (AO1 and AO2) are programmable, and the range of the outputs is $+10 \mathrm{~V} . . .-10 \mathrm{~V}$. The third output is an armature current actual measurement from the HW-circuit. For more detailed information, see TECHNICAL DATA.

Input signal	201	SP
		${ }_{[\mathrm{IN}]} \mathrm{AO} 1$
Maximum output voltage (V) $\longrightarrow \mathrm{P}$	202	NOMINAL V
Minimum output voltage (V) $\longrightarrow \mathrm{P}$	203	OFFSET V
Maximum value \longrightarrow	204	NOMINAL VAL
		ST5

Figure 9 Analog Output Function Block

Example:

If the signal SPEED ACT (12102) is used in the analog output1, the settings are:
$\begin{array}{llr}\text { AO1 [IN] (201) } & =12102 \\ \text { AO1 NOMINAL V (202) } & = & 10 \\ \text { AO1 OFFSET V (203) } & = & 0 \\ \text { A01 NOMINAL VAL (204) } & =20000\end{array}$
With these settings the actual speed value 20000 corresponds to +10 V output voltage.

$$
U_{\text {out }}=\frac{[I N]}{\text { NOMINAL VAL }} \times \text { NOMINAL V }+ \text { OFFSET V }
$$

- Settings and commissioning functions SETTINGS function block

This block serves for scaling all important signals. It is subdivided into 5 parts.
The parameters 517 to 521 are only needed, if a C4 type converter is used. For more details, please see OPERATING INSTRUCTION.

In special cases, the calculated EMF needs to be smoothed. Parameter EMF_FILT_TC (513) serves for this reason.

The converter can display parameters and internal signals in physical values. To be able to do so, some basic values have to be scaled:
U_MOTN_V (501) nominal motor voltage
I_MOTN_A (502) nominal motor current
I_MOT1_FIELDN_A (503)
I_MOT2_FIELDN_A (504)
FEX_SEL (505)
nominal field current for field supply unit 1
nominal field current for field supply unit 2 , if there is one
selection of field supply unit

There are several signals, which can be used for indication. The signal armature voltage is already connected to the analog output 2. The scaling of these signals is different.
U_ARM_ACT (10505) actual DC output voltage
scaling: $100 \%=4095$ equal 1.35 * P507 in volt
TORQUE_ACT (10503) calculated actual torque, based on armature current and flux signal
scaling: $100 \%=4000$ equal nominal motor torque, if P502 is set to nominal motor current and P503/504 is set to nominal motor field current
CONV_CUR_ACT (10501) actual DC output current
scaling: $100 \%=4095$ equal nominal converter current in A
ARM_CUR_ACT (10502) actual DC output current
scaling: $100 \%=4095$ equal nominal motor current in A, if P502 is set to nominal motor current
CURR_ACT_FILT_TC (523) serves for smoothing of current actual signals 10501 and 10502

In a similar way, some basic scalings have to be done for the motor, they have to be done for the network too.
PHASE_SEQ_CW (506) phase rotation
U_SUPPLY (507) nominal line voltage

MANUAL TUNING function block

The language, in which you want to read your information on the panel, can be selected by
LANGUAGE (522) selection of language at CDP 312
For more details, refer to the special chapter or the OPERATING INSTRUCTION.

The controllers of the DCS 500B drive can be tuned manually or automatically. There is an automatic tunig function for the armature and field current controller. The speed loop, the armature current, the EMF and field current controller can be manually tuned. Both tuning methods are initalized by a parameter.

The manual tuning can be done if LOCAL-mode is selected with the panel or by external digital I/O.

The selection is made by means of parameter:
DRIVEMODE (1201)
4 = armature current controller
7 = first field exciter
8 = second field exciter
9 = speed loop (reference chain and speed controller)
10 = EMF controller
Selection replaces normal references to the controllers or the speed loop with the manual tuning reference. E.g. in a case of the speed loop the LOCAL SPEED REF is replaced with manual tuning reference.
Source of the manual tuning reference can be selected from four different sources:
POT1 VALUE (1204) range: -32 768... 32767
POT2 VALUE (1205) range: -32 768... 32767
SQUAREWAVE (11206)
generator whose levels are set with POT1 and POT2 VALUE
and time interval with PERIOD btw.POT1/2 (1206)
TEST REF (11207) range: $0 . . .65535$
The selection is made by the signal TEST REF SEL (11209).

0	$=[$ [ZERO $]$	reference is zero
$\mathbf{1}$	$=[$ [POT1]	POT1 VALUE (1204)
$\mathbf{2}$	$=[$ POT2]	POT2 VALUE (1205)
$\mathbf{3}$	$=[$ [SQRW $]$	SQUAREWAVE (11206)
$\mathbf{4}$	$=[$ TEST]	TEST REF (11207)

During the manual tuning measurements can be made e.g. with CMT/DCS500 tool or analog outputs.

To set the level of the POT1/2 and the TEST REF has to be in the normal reference range of destination.

Autotuning

see OPERATING INSTRUCTION
When a DRIVEMODE function was used status codes are indicated by the signal COMMIS STAT (11201):

0 = NOT ACTIVATED

selected function successfully worked out
Messages, which may come up, if a SDCS-CON1 is used:

1 = RUN COMMAND ?
2 = FEXC SEL ?
3 = FEXC RDY OPER
4 = $\mathrm{FEXCOK}=0$
$5=$ FIELD ON=0
6 = IF NOT IN 95-105\%
7 = NOT OK AFTER 20s
$8 . .48=$ reserved

See code 53
Wrong FEX selection
FEX1 / 2 or DCF 503/4 not ready for operation
Field supply not o.k.; see error message on the display of the converter
FEX1 / 2 or DCF 503/4 not switched on
Field current not within 95\% 105\%
Drive was not released by hardware within 20s

Messages, which may com MODE $=3$ [ARM. AUTOT rent controller is used:	up, if a SDCS-CON2 and DRIVE NING] autotuning of armature cur-
$49=$ IF AT START ?	Field current does not reach reference within 10 s, when the selftuning is started
$50=$ OHMIC LOAD	Ohmic load not determined
51 = IACT FEEDBACK	Current feedback is less than current reference during measurement of armature resistance. Current limits are lower than the limit for continous current flow or lower than 20%.
$52=$ CURRENT CURVE	Bad current curve. Fuse blown,thyristor not firing or no motor load.
53 = RUN COMMAND ?	Wrong starting conditions. The drive is running when the autotuning is started or run command is not given within 20 s after start of autotuning.
$54=$ TOO HIGH SPEED	Too high speed during autotuning .Speed greater than 1\% or EMF greater than 15%.
$55=$ INDUCTANCE	Inductance cannot be determined. Fuse blown, thyristor not firing or no motor load.
$56=$ CONT CURR LIM	Limit for continous current flow cannot be determined.
57 = FIELD REMOVAL	The field removal takes longer time than 10 s .
$58=$ STOP COMMAND	Current regulator blocking or stop command appears during autotuning.
Messages, which may com MODE $=5$ [FEX2/3 AUTO controller with FEX2 or DC	me up, if a SDCS-CON2 and DRIVE OTUN] autotuning of field current F 503/4 is used:
$60=$ CANNOT AUTOTUNE	The field current controller cannot be set by this function
61 = ILL START COND	Illegal start condition for field autotuning

- Drive Logic

DRIVE LOGIC function block

Closing Control of the Contactors

The purpose of the Drive Logic is to control the main, excitation and fan contactors, start and stop the drive and protect the drive in fault situation. The Drive Logic contains the outputs which indicate the state of the drive.

The explanation given within the next paragraphs is based on the default structure of the converter. In this case, the configuration is identical to speed control with speed controller and current controller. This logic has been changed compared to earlier software versions. In this version the signals ON/OFF and RUN $1 / 2 / 3$ are edge sensitive. When the electronics of the drive is switched on, the binary inputs must have 0 status. Otherwise, the drive will not start, until the first 0 to 1 transition is received by the input.

If the output RDY ON (10901) $=\mathbf{1}$ (no FAULT), then the outputs for handling the main, field and fan contactor(s) of the drive can be closed by giving the logical 1 command (edge sensitive; 0 to 1 transition!) to the input [ON/OFF] (901). Parameter MAIN_CONT_MODE (915) defines the main contactor control mode:

0 = closed when both [ON/OFF] (901) and
([RUN1] (902) or [RUN2] (903) or [RUN3] (904)) inputs are in state 1
1 = close when [ON/OFF] (901) is in logical state 1
The following sequence will take place when [ON/OFF] (901) changes from 0 to 1 :

Figure 11 RDY RUNNING sequence.

Opening Control of the Contactors

If the signal [ON/OFF] (901) changes from 1 to 0 (edge sensitive), the drive will block the controllers immediatelly and start a delay time. Because of the regulator blocking the armature and field current will be forced to zero. When the delay time has elapsed the outputs for handling the contactors will be set to 0 ; the contactors should drop off.
This input has the second highest priority. The sequence described before will be worked out independant from the drive condition (with / without speed; with / without armature current).

In case of tripping, the fan, field and main contactors are opened in a certain order which depends on the type of the fault. Fault activates the output FAULT (10904) to logical state 1.

If a motor or converter overtemperature fault is detected, the outputs for handling the cooling fans are kept high until the measured temperature has decreased below the alarm level.
The drive will accept a reset-command, when the temperature has decreased below the fault level. In this case the outputs for the fan contactors will be reset.

There are 3 different types of faults:

- Faults which trip the main contactor:
- Faults which trip main contactor and field contactor
- Faults which trip main contactor, field contactor and fans
for more detailed information, please see

manual OPERATING INSTRUCTION

The input START_INHIBIT] (908) has the highest priority. If this input is set to 1 , the outputs for the handling of the contactors can never be forced to level 1 , if the drive is at standstill. If the drive is running and the input is set to 1 , the drive will act in the same way as if [ON/OFF] (901) is set to 0 . Afterwards the drive cannot be switched on as long as START_INHIBIT (908) has logic 1 level.

When dynamic braking is used (output DYN BRAKE ON (10912)), an external resistor is connected in parallel with the armature module. If the drive trips, the field of the motor must be maintained, otherwise the resistor cannot produce fast deceleration.

Run Control When RDY RUNNING (10901) = 1, the drive can be started by setting either input [RUN1] (901), [RUN2] (902) or [RUN3] (903) to state 1. The drive releases the references and controllers and sets the RUNNING (10903) signal to logical state 1. Another way to start the drive is by Control Panel CDP312 in local mode using the start button.

Stop Control The drive can be stopped in the following ways:

- By opening the Main Contactor:

Controlling [ON/OFF] (901) input to zero state. All contactors will open and there is no electrical braking. The drive will stop by coasting (see opening control of the contactors).
This stop mode cannot interrupt Emergency Stop, Stop because of panel or field bus link problems.

- RUN-command to zero

If all RUN inputs [RUN1] (902), [RUN2] (903) or [RUN3] (904) are set to zero, the drive will stop.
This stop mode can be interrupted by Emergency Stop, Stop because of panel or field bus link problems.

Parameter STOP MODE (916) defines how the stop is made:
0 = stop by ramp (DECEL1 (1709) or DECEL2 (1712)) at RAMP GENERATOR function block
1 = stop by torque limit (TORQ_MAX / TORQ_MIN)
2 = stop by coasting (torque is zero)
If the drive is stopped and should be restarted, the actual condition of the drive has to be taken into consideration:

- if STARTSEL (1717) = 0 (start from zero):
a. and the actual speed is below MIN_SPEED_L (2201) the drive accepts the 0 to 1 transition of the RUN command and will accelerate according to the reference without handling the ON/OFF signal
b. and the actual speed is above MIN_SPEED_L (2201) the 0 to 1 transition is ignored as long as the speed is above this level; if this cannot be accepted because of any reason (e.g. stop by coasting) both inputs must have logic 0 level; afterwards, ON/OFF and RUN should be set to 1 (edge sensitive); the drive will force the motor to zero speed by the torque limit at first and afterwards, the drive will accelerate according to the reference; this behaviour is independant from the selected stop mode
remark: if EMF is selected as a speed feedback signal, it may happen, that the drive reacts according to a, because the MIN_SPEED_L is too smal
- if STARTSEL (1717) = 1 (flying start):
the RUN command is no longer edge sensitive; the drive will accelerate according to the reference, when the RUN command is set to 1 , independant, if the actual speed was zero or different to zero before; if the drive was stopped by the ON/OFF command (the RUN command was kept to logic 1 level), it will react when ON/OFF changes from 0 to 1 in the same way, as if the RUN command would have been used

- Coast Stop

When [COAST STOP] (905) input is set to logical state 1, regulators are blocked and contactors remain closed. The drive is allowed to decelerate freely towards zero speed. As long as the drive stops in this way, the stop functions available with the RUN command are disabled and vice versa.
This stop mode can be interrupted by Emergency Stop, Stop because of panel or field bus link problems.

- Emergency Stop

If [EME STOP] (906) signal is set from 1 to 0 , the emergency stop function is activated. The reaction of the drive can be defined by paramter EME STOP MODE (917) :
$0=$ stop by ramp (EMSTOP_RAMP (1714)) at
RAMP GENERATOR function block
1 = stop by torque limit
2 = coast stop (torque is zero)
3 = dynamic brake
The state of the output signal EMESTOP ACT (10907) changes $0->1$. The drive will come up with an ALARM, which must be reset and which will open all contactors at zero speed (with coasting immediatelly).
For resetting the fault, see OPERATING INSTRUCTION This stop mode can interrupt the Stop because of panel or field bus link problems.

Reset the drive fault

- Stop because of problems with the panel link (communication between drive and control panel CDP 312)
if the serial link between the drive and the control panel is interrupted by any reason (panel removed from the drive, cable broken, etc) the reaction of the drive can be specified by paramter PANEL_DISC_MODE (918):
0 = stop by ramp (DECEL1 (1709) or DECEL2 (1712))
at RAMP GENERATOR function block
1 = stop by torque limit (TORQ_MAX / TORQ_MIN)
2 = stop by coasting (torque is zero)
3 = stop by dynamic brake
4 = continue remote
The drive will come up with a FAULT, which must be reset and which will open all contactors at zero speed (with coasting immediatelly).
- Stop because of problems with the field bus serial link (communication between drive and progr. logic controller) if something is wrong with the field bus serial link (between PLC and serial link adapter module or between adapter module and drive) the reaction of the drive can be specified by parameter COMFAULT_MODE (920):
0 = stop by ramp (DECEL1 (1709) or DECEL2 (1712)) at RAMP GENERATOR function block
1 = stop by torque limit (TORQ_MAX / TORQ_MIN)
2 = stop by coasting (torque is zero)
3 = no action
The drive will FAULT and must be reset and will open all contactors at zero speed (with coasting immediatelly).

The drive can be reset using the input [RESET] (907) or in local control mode by means of the control panel CDP312 by pressing the RESET-button. The drive recognises the rising edge of the signal. To be able to restart the drive after trip, there has to be a rising edge in signal ON/OFF-input . The technique prevents the RESETinput signal from self-commanding the contactors "ON".

Figure 12 Example of the behaviour of the program in case of motor overtemperature fault

Change between parameter set1 and set2

The DCS 500B software can be discussed from different point of views, depending what is wanted. Within chapter 1 the features are listed by their functionallity. If this functionallity needs to be used at probably two different applications, it is more useful to have a look to the internal structure of the software.

The drive control program is subdivided into 3 blocks:

- parameter set 1 for parameter groups 1 to 24
- parameter set 2 for parameter groups 1 to 24
- application set for parameter groups 25

Local/Remote

The Drive can be controlled either in Remote state by means of the digital inputs or in Local state by the CDP312 control panel or the CMT/DCS500 Commissioning and Maintenance Tool. LOCAL (10906) output is in logical state 1 , if LOCAL-mode is selected.

- Speed feedback and speed reference handling

The speed feedback signals can be taken from three different sources:

- by means of analog tacho generator
- by means of a pulse encoder
- from the EMF signal, calculated by the converter by means of the converter's output voltage

The speed reference for speed control can be given in several ways:

- by means of analog input
- from a constant reference source
- reference up/down counter
- application program
- CDP312 panel or CMT/DCS500 Tool

Speed scaling to software

SPEED MEASURME NT function block

The speed values (ref./act.) are scaled so that 20000 units in software equals to the drive's maximum speed which is set in parameter SPEED SCALING (2103) in 0.1 rpm accuracy. For example, maximum speed is 1000 rpm . SPEED SCALING would be set to 10000 . When speed reference is 10000 , the motor runs at 500 rpm. The maximum value of the speed reference is -30000 or +30000 depending on which direction of rotation is used.

The speed of the motor can be measured in three different ways: by an incremental encoder, by an analogue tacho generator or by a calculated/measured EMF-voltage. Speed measurement with the pulse encoder has four different modes. The difference between these modes is in the accuracy of the measurement, which depends on the type of pulse encoder.
The analogue tacho generator is connected to the analogue input channel AITAC. The input voltage range is $-10 \mathrm{~V} . . .+10 \mathrm{~V}$ and accuracy of A / D-conversion is 13 bits. If higher than 10 V tacho generator is used, the scaling of incoming voltage can be done on I/Oboard SDCS-IOB-1 and in case of I/O-board SDCS-IOB-3 with external circuits (PS5311). The software of the DCS 500B includes scaling parameters for adjusting the analogue speed feedback.

Selection of the speed actual measurement	Speed measurement mode is selected by means of parameter SPEED MEAS MODE (2102).
	$0=$ [ENCODER A+,B dir] ch A pos edges for speed; ch B : direction 1 = [ENCODER A+-] ch A: pos. and neg. edges for speed 2 = [ENCODER A+-,B dir] ch A pos and neg.edges for speed; ch B : direction 3 = [ENCODER A+-,B+-] ch A and B and pos. and neg. edges for speed and direction $4=[$ ANALOG TACHO] AITAC is used 5 = [EMF SPEED ACT] speed actual is calculated from the EMF motor; this is the default setting

Incremental encoder

Analogue Tacho Generator

Polarity The polarity of the analogue tacho generator voltage must be positive with positive speed references and negative with negative speed references.
Note. If the polarity is false, the drive trips to SPEED MEAS. FAULT.

Scaling of the actual voltage to control

Application example

The function of the analogue tacho generator can be checked by driving the motor at actual speed which is based on the calculated EMF. At the mean time the drive's actual speed is measured by a manual tachometer and incoming feedback of the analogue tacho generator can be checked from the output OUT+ (10101) of AITAC function block.

Example. Let's suppose that speed reference value 20000 corresponds to 1500 rpm of motor. First a value 15000 is set to parameter SPEED SCALING (2103). The tacho generator gives +8 V at actual speed 1500 rpm forward and -8 V at 1500 rpm reverse. The actual speed of the motor has to be 1500 rpm with speed reference 20000, so the AITAC scaling is made as follows for:
AITAC CONV MODE (101) $=3$
AITAC HIGH VALUE (102) $=(10 \mathrm{~V} / 8 \mathrm{~V})^{*} 20$ 000=25 000
AITAC LOW VALUE (103) $=(10 \mathrm{~V} /-8 \mathrm{~V})^{*} 20000=-25000$
Actual speed based on EMF

Calculation of speed from the EMF

Filtering of the actual speed

The EMF (Electromotive Force) speed actual is based on the relationship of flux, EMF and actual speed. This method can be used up to the field weakening point. The parameter U MOTN V (501) defines the armature voltage of the motor, which corresponds to the speed value 20000 in the software.
The armature autotuning function calculates the ARM R (411) and ARM L(410) parameter values. See paragraph "Autotuning" in this chapter.
$n=\frac{U d c-\left(R_{A} * I_{A}+L_{A} * d I_{A} / d t\right)}{F L U X}$
The resistive voltage drop ARM R (411) is calculated:

$$
A R M ~ R=22444 * R A[\Omega] * \frac{I \operatorname{CONVA}(10509)}{U \operatorname{SUPPLY}(507)}
$$

where RA $[\Omega]$ = armature resistance
The inductive voltage drop ARM $\mathbf{L}(\mathbf{4 1 0})$ is calculated:

$$
A R M L=\frac{L A[\mathrm{mH}] * I \operatorname{CONV} A(10509) * 245}{U S U P P L Y(507) * \text { scantime }}
$$

where $\mathrm{LA}[\mathrm{mH}]=$ armature inductance in mH scan time $=3,33 \mathrm{~ms}(50 \mathrm{~Hz}$ network) or $2,77 \mathrm{~ms}(60 \mathrm{~Hz})$

Filter time constant for signal SPEED ACT (12102) can be adjusted by parameter SPEED ACT FTR (2104). The output of the second filter SPEED ACT FILT (12103) can be used as display.

CONST_REF function block

SOFTPOT function block

Reference increment and decrement

Limitation

REF_SEL function block

Only one of the five constant reference sources can be selected at a time by means of inputs [ACT1] (1901), [ACT2] (1902), [ACT3] (1903) or [ACT4] (1904). The Logic diagram is shown above. If ACT1...ACT4 inputs are all in zero state, the reference value is set to parameter DEF (1905). Otherwise the reference value is one of REF1...REF4.

For example, if constant reference REF3 (1908) is used, input [ACT3] (1903) has to be set to logical state 1 and inputs [ACT1] and [ACT2] must be set to zero by the application. Normally, if input pin is not connected at all, its state is zero. Block output OUT (11901) value is set equal to parameter REF3 (1908).

The speed reference generated by the SOFTPOT (software potentiometer) acts as an up/down counter. The function is shown in the following figure.

Figure 13 SOFTPOT up/down function block
The input [INCR] (1918) activates incrementing of speed reference. The speed reference acceleration time is defined with parameter ACCEL 1 (1708) in RAMP GENERATOR function block. The input [DECR] (1919) activates decrementing of speed reference. The speed reference deceleration time is defined with parameter DECEL 1 (1709) in RAMP GENERATOR function block.
The maximum and minimum limits for speed reference are set with parameters OHL (1921) and OLL (1922).
If input [FOLLOW] (1920) is in logical state 1, the output of the block OUT (11904) follows actual speed of motor (SPEED ACT) signal.
The logical output ACT (11905) is in state 1 when either [INCR] (1918) or [DECR] (1919) input is in state 1.

The speed references from different sources are collected to this function block.

The inputs [SEL1] (1911), [SEL2] (1913), [SEL3] and (1915) control which of the reference signals ([IN1]...[IN3]) is connected to the SUM block inside the REF SEL function block. Only one of the signals IN1, IN2 or IN3 can be connected to the SUM block at a time. [ADD] (1916) is always connected to the SUM-block.

Changing of the speed direction of rotation

RAMP GENERATOR function block

Input [REV] (1917) controls the output selection of the SUM-block. If this input is set to logical state 1 , the speed reference at the OUT (10202) is negated. This can be used to change the rotation of direction on a 4Q-drive.

The main function of the RAMP GENERATOR function block is to accelerate and decelerate the motor's speed with selected time constants to the value of [IN] (1701).

Figure 14 Function of the Ramp Generation function block

Local / Remote Speed Reference

There are two switches in front of the ramp block. The first switch is the LOCAL/REMOTE selector. When LOCAL control is selected from, for example, the CDP312 control panel, the speed reference comes from the panel link. In REMOTE control the reference comes from the input pin [IN] (1701).

The second switch sets the reference to zero at the input of the ramp by means of [RES IN] (1702) input pin.

Holding of the reference

Ramp Function in Emergency Stop

If the [HOLD] (1703) input is in logical state 1, the output of the ramp is holding the old value.

If emergency stop function is activated by drive logic EME STOP MODE (907) $=1$, then the deceleration time is read from the parameter EMESTOP RAMP (1714).

Selecting of the Ramp function	It is possible to define two different acceleration, deceleration and smoothing time constants. A typical application for this feature is two DC-motors connected to one drive and each motor is operated separately. The application program in the drive may also select different ramp times in different control situations. Selection can be done by input pin [T1/T2] (1707). If input [T1/T2] (1707) is in logical state 0 , then the values of the parameters ACCEL 1 (1708), DECEL 1 (1709) and SMOOTH 1 (1710) define the ramp function as seen in figure above. If input [T1/T2] is in logical state $\mathbf{1}$ then the values of the parameters ACCEL 2 (1711), DECEL 2 (1712) and SMOOTH 1 (1713) define the ramp function.
Limitation of the reference	Parameter SPEEDMAX (1715) defines the maximum reference value and SPEEDMIN (1716) the minimum value after the RAMP block.
Passing of the RAMP function	The ramp function can be bypassed by setting the input [FOLLOW IN] (1704) to logical state 1.
Output follows the speed actual	The output OUT (11701) can be made to follow the speed actual by setting the input [FOLL ACT] (1705) to logical state 1.
Reset the output	The output OUT (11701) can be set to zero by setting the input [RES OUT] (1706) to logical state 1.
Acceleration compensation	The output ACCEL COMP (11702) is giving the additional torque reference which is needed to compensate inertia of load. The acceleration compensation mode is selected by parameter ACC COMP.MODE (1718). The time in which the drive will accelerate from zero speed to max. speed using motor nominal torque is set to parameter ACC COMP.TRMIN (1719)

- Speed Control

REFSUM_2 function block

SPEED_ERROR func- The main task of the SPEED ERROR function block is to calculate tion block

Speed Step for testing

The function of the speed control is to adjust the torque reference for the torque control so that the speed actual will be equal to the speed reference.

The last function block of the speed reference chain is REF SUM. The block adds [IN1] + [IN2] = OUT. The output OUT (11701) of the ramp generator is connected to input [IN1] (1801) and possible additional reference to [IN2] (1802). the difference between the speed reference in input [IN] (2001) and speed actual SPEED ACT (12102).

Input [STEP] (2002) can be used, for example, during the commissioning to make step response tests in order to find out the correct PI-values for the speed control. [STEP RESP] (12003) output can be used to monitor the speed response during the commissioning.

Figure 15 Response for a speed step
Error value filter The error between the speed reference and actual values can be filtered by means of parameter FRS (2005).
Too much filtering should not be used, because it slows down the control and easily causes transient overshoots in the response. It is reasonable to find out the cause for disturbances, for example, varying load, mechanics, settings of controllers, installation of a pulse encoder, etc.

Window Control

 PrincipleApplication example for Window Control

Enabling the Window Control

Determining the Window Size

Output connection points

In master/follower drives, where the follower section is torque controlled, the window control is used to keep the speed deviation of the section under control. The speed error output to the speed controller is zero when speed error is less than WINSIZE/2.

If the load of the follower disappears because of a disturbance in the process, the speed error will be outside the window. The speed the process, the speed error will be outside the window. The speed
controller works and its output OUT (12004) is added to the torque reference [TREF SPC] (2407).
Speed control brings the speed difference back to the window. This function could be called overspeed or underspeed protection in the torque control mode.

The window control is activated by setting the input [WIN MODE] (2003) to logical state 1.

The parameter TREF SEL (2406) in the TORQ REF HANDLING function block must be set to value 5 when window control is used.

Figure 16 Window control function
The idea of Window control is to deactivate the speed control as long as the speed deviation remains within the set window. This allows the external torque reference to affect the process directly.

The size of window determined by parameter WIN SIZE (2004), scaling is the same as for the speed reference. See the previous figure "Window control function".

The output OUT OF WIN (12002) is activated to logical state 1, if the value of speed error is outside the window area (defined in parameter WIN SIZE (2004).

SPEED_CONTROL

function block

Gain and Integral time settings

The P-gain reduction

The speed error is formed in the SPEED ERROR function block, and it is connected to input IN (2006). The proportional gain (scaling $100=1$ gain) KP (2014) and integrator time constant (scaling 1 $=1 \mathrm{~ms}) \mathbf{K I}$ (2018) are the main parameters of the speed controller PI-function. The output of the integral function can be reset by setting the input [RINT] (2007) to state 1 . Hold function is activated by setting the input [HOLD] (2012) to logical state 1.

The adaptive gain of the speed controller is used to smooth out disturbances which are caused by e.g. low load and backlash. Moderate filtering of speed error FRS (2005) is typically not enough to tune the drive. Especially if there is a substantial backlash in the drive and the drive oscillates at a low torque due to the mechanics.

Parameter KPSMIN (2015) determines the proportional gain when the controller output is zero. When the output exceeds the value of parameter KPSPOINT(2016), the proportional gain is normal KP (2014). The rate of change of the proportional gain can be smoothened by means of parameter KPSWEAKFILT (2017).

Figure 17 Reduction of gain as a function of torque reference
Output Limitation The speed control output OUT (12004) is limited by the TORQUE/CURRENT LIMITATION function block (SPC TORQMAX1 and SPC TORQMIN1). Output IN LIMIT (12005) is in logical state 1 , when the output of the speed controller is in positive or negative limit.

Integral part Setting during the Control Mode Changing

Principle of Drooping

Drooping Adjustment

Output from the integral part can be adjusted to a certain level by setting the [BAL] (2008) to logical state 1; then the value of [BAL REF] (2009) is set to the output of the integral part. There is another similar function controlled by [BAL2] (2010) and [BAL2 REF] (2011).

BAL REF and BAL inputs are used, for example, in the mechanical brake control block of the standard program. BAL2 REF and BAL2 inputs are used in torque control. In torque control the integral part of the speed controller follows the OUT (12402) pin of the TORQ REF HANDLING function block. This function provides an bumpless current reference during a change of control mode (for example Torque --> Speed control).

Drooping can be used if a certain amount of speed decrease is needed when the load increases, for example, in the slave drive(s) when they are speed controlled. Then the master and slave drives do not conflict with each other before the slave(s) change to torque control even if there is a slight speed difference between them. On the other hand, drooping is used in drives where mechanical connection is not strong enough to enable use of torque control.

The amount of speed decrease caused by the load is defined by the parameter DROOPING (2013). The scaling is $10=1 \%$. With the torque reference 4000 the speed will decrease 1% calculated from the rated speed when DROOPING $=10$.

Figure 18 Drooping as a function of torque reference

Speed Actual There are four comparators available for speed actual monitoring. Comparators

Overspeed limit The drive can be protected against overspeed e.g. in cases where a drive section is controlled with the torque reference and the load is decreasing rapidly. The overspeed limit is set with parameter OVERSPEEDLIMIT (2204), scale: speed units, range: (0... 30 000) $20000=100 \%$. Motor overspeed fault (code 37) will be activated, if overspeed limit is exceeded. Default value is 23000.

Speed Measu- The speed measurement supervision is based on the relationship of rement Fault the measured speed and measured/calculated EMF. Parameter MON.MEAS LEV (2209) is the minimum absolute value that the measured speed must have when EMF ACT (10506) is above the limit MON.EMF (2210). Otherwise the speed measurement fault is activated (fault code 14).

Figure 19 Speed measurement fault logic diagram
Stall Protection The stall protection stops the converter when the motor is in apparent danger of overheating. The rotor is either mechanically stalled or the load is otherwise continuously too high. The selection of the stall protection is made by parameter STALL SEL (2205).
$0=$ stall ptotection disabled
$1=$ stall protection enabled
The stall protection is activated if the following conditions are fullfilled:

- Actual speed SPEED ACT (12102) is below the limit set by parameter STALL SPEED (2206)
- Actual torque TORQ ACT (10503) exceeds the limit set in parameter STALL TORQUE (2207) and this condition has been effective for at least the time set in parameter STALL TIME (2208).

When the drive stops, the fault MOTOR STALLED is indicated with fault code 23 and bit number 14 will be set in FAULT WORD2 (11102).

Functional Software description

- Torque Reference

TORQ_REF_SELECTI ON function block

Torque Reference Scaling

$$
0
$$

The function of the torque reference chain is to form a desired reference for the current regulation.

Load sharing in Master / Follower Application

An external torque reference can be connected via analog inputs. AI2 function block is connected to [TREF A] (2401) in the standard program, and this input contains a filter controlled by parameter TREF A FTC (2402) $(1000=1 \mathrm{~s}), 0=$ not in use.
[TREF B] (2404) input is another torque reference input, which contains the ramp generator function controlled by parameter TREF B SLOPE (2405) $(1000=1 \mathrm{~s}), 0=$ not in use.

The value 4000 is equal to nominal torque of the DC -motor $\left(\mathrm{T}_{\mathrm{N}}\right)$. Therefore the analog input must be scaled according to this value. For example, an external torque reference $-10 \mathrm{~V} . . .+10 \mathrm{~V}$ is connected to analog input Al2 and the torque reference should be $-100 \% \ldots+100 \%$ of the motor nominal torque. The parameter settings are:
Al2 CONV MODE (107) = 1
Al2 HIGH VALUE (108) $=4000$
Al2 LOW VALUE (109) $=-4000$
The load of the follower drive can be adjusted by means of input
[LOAD SHARE] (2403) to the desired value by the application function blocks. The default value is $100 \%=4000$. The output OUT (12401) is calculated:
[TREF A] x [LOAD SHARE] / $4000+$ [TREF B]
Output Limitation The final torque reference before limitation is a sum of a [TREF A] multiplied by [LOAD SHARE] and [TREF B]. The output OUT (12401) can be limited by internal signals [TREF TORQMAX1] and [TREF TORQMIN1] in the function block TORQUE / CURRENT LIMITATION.

TORQUE/CURRENT LIMITATION function block

Current Limitations

Torque / Current Limitation function block consist of limitation circuits for torque and current references and gear backlash compensation.

The limitation of armature current is based on fixed current limit parameters and on limits which are the function of the actual speed. There is a function block with given points of speed and maximum current on these points. Finally the current limit selection is based on a maximum/minimum selection of these two limitation sources.

Speed Dependant Current Limitation

Torque Limits Torque limits for the speed controller and the external torque reference chain are set by means of the parameters. The program takes care that these limits cannot exceed the final torque limits, which are based on the given armature current limit and flux referwhich are based on the given armature current limit and flux refer-
ence. This ensures that, e.g. the speed controller does not ask for a larger torque than the current limits allow.
The torque limitation outputs 12301... 12306 are internally connected to torque reference chain and speed controller.

The armature current limits are calculated for the torque limits by means of the flux reference in such a way that the nominal current of the motor with nominal flux gives nominal torque of the motor, scaling: $4000=T_{N}$ (motor). The final torque limits can be read out from signals TORQMAX2 (12305) and TORQMIN2 (12306).

TORQ MIN (2306), scale: $4000==T_{N}$ (motor)
TORQ MAX (2305), scale: $4000==\mathrm{T} \mathrm{N}$ (motor)
Scaling of these limit values is $4095=$ nominal current of the motor I MOTN A (502)

ARM CURR LIM P (2307), scale: $4095=1$ MOTN A (502) ARM CURR LIM N (2308), scale: 4095 = I MOTN A (502)

Example. If the nominal current of the motor is 200A and the maximum current is set to +/-230A, the limits are set to $230 \mathrm{~A} / 200 A^{*} 4095=+/-4709$.

With the help of this function the load (motor's shaft, coupling, gear box and load machine) or the motor itself (commutation problems at high speed) can be protected against overload.
If the drive is used in the field weakening range, the torque produced is lower than in the base speed range. Because of this and together with the design criteria of the mechanics sometimes the current needs to be lowered to avoid damage.
Some motors (most often at high speed motors) the current needs to be reduced depending on the speed because of their electrical design. Especially above the field weakening point the loading current needs to be reduced according to instructions of motor catalogue.
The speed dependant current limitation function is described by 5 (x, y) coordinates. The pairs are:

1. ... _LIM_SPEED - ... _LIM_N1
2. point $1 / 4$ - ... _LIM_N2
3. point $2 / 4$ - ... _LIM_N3
4. point $3 / 4$ - ... _LIM_N4
5. 100% / 20000 point - ... _LIM_N5

Linear interpolation is used for values between these coordinates.

The function can be graphed using the 5 points determined by the parameter settings.
Within the next figure there are 3 possibilities shown together with the outlooking of the curve and the parameter setting.

Figure 20 Speed dependant current limitation (example)
In default condition the parameters _LIM_Nx are set to 4 times nominal current and _LIM_SPEED is set to $20000=100 \%$ speed to disable the function. The values of the parameters P2310 to P2314 don't need to be in a specific order (e.g. not constantly increasing / decreasing, see above). Dependend on the function of the armature current over speed range the following steps should be applied:

- specify the MAX_CURR_LIM_SPEED (2309)
- set the ARM_CURR_LIM_N1 (2310); the converter will use this value for the speed range between zero speed and P2309; please keep in mind, that all other limitations have to be increased, if more than nominal motor current is demanded (scale: $4095=$ nominal current of motor)
- the speed range between the speed specified via P2309 and top speed (100% or 20000) is splitted into 4 even parts
- set the ARM_CURR_LIM_N2 (2311); to a current value, needed at point $1 / 2$
- do the same with the other pairs

Gear Backlash
Compensation

The gear backlash compensation function can be used for back-lash-affected drives. When the torque reference is changing direction, the torque limit is reduced for a while. Parameter GEAR.START TORQ (2315) defines the torque limit after the torque direction change. Scale: $4000=$ nominal torque of motor

GEAR.TORQ TIME (2316) is the time period after the direction change when GEAR.START TORQ torque limit is used. Scale: $1=$ 1 ms .

GEAR.TORQ RAMP (2317) defines the rate of change for the torque limit when GEAR.TORQ TIME has elapsed. GEAR.TORQ RAMP is given as the maximum change of torque limit in 3.3 ms $(50 \mathrm{~Hz})$. Scale: $4000=$ nominal torque of motor

Figure 21 Gear backlash compensation principle

- Current Control

TORQ_REF_HANDLI NG function block

Torque Reference Selection

The speed controller's output is normally connected to input [TREF SPC] (2407) and external torque reference to [TREF EXT] (2408).

The TORQ REF HANDLING function block consists of the operating mode selector for the torque reference, and it is controlled by parameter TREF SEL (2406) which has six different modes.
$\mathbf{0}=\quad$ no torque or speed control
$1=\quad$ always selects the output of the speed controller [TREF SPC] (2407) as the torque reference. This is a normal selection for speed control.

2 = always selects the external torque reference [TREF EXT] (2408) as the torque reference. This is a normal selection for torque control.
Note. If the torque reference does not correspond to the load, e.g. the drive load falls down suddenly, it is possible
to prevent overspeed in the drive section by means of parameter OVERSPEEDLIMIT (2204).
$3=\quad$ selects the minimum value from the external torque reference or the speed controller output. A negative speed difference (SPEED REF < SPEED ACT) causes a change-over to speed control. A change-over from speed control to torque reference takes place when the torque reference is smaller than the speed controller output and speed difference is positive [TREF EXT] < [TREF SPC] and SPEED REF \approx SPEED ACT)
$4=\quad$ selects the maximum value based on the speed difference. A positive speed difference (SPEED REF > SPEED ACT) causes a change-over to speed control. A change-over from speed control to torque control takes place when the torque reference is greater than the speed controller output, ([TREF EXT] > [TREF SPC] and SPEED REF \approx SPEED ACT).
$5=\quad$ Window control, external torque reference and speed controller output are added. See more details in paragraph Window Control Principle.

Torque Step [TORQ STEP] (2409) input is available for testing the current regulation or for direct control of the current regulator.

Output Limitation
and its Indication

Output signal OUT (12402) can be limited by internal signals [TORQ MAX2] and [TORQ MIN2] in the function block TORQUE / CURRENT LIMITATION.
Output IN LIM (12404) is in logical state 0, when the input of the limitation block is within the TORQMAX2 and TORQMIN2.

CURRENT_CONTROL function block

Torque / Current Reference Selection

Current Response Test

Regulation The current regulation can be blocked by setting input [BLOCK] Blocking

Armature Current Scaling

The current reference is formed by dividing [TORQ REF] (401) by the FLUX REF1 signal according to formula

Current = Torque $/$ Flux

The current reference can be connected to input [CURR REF] (402). Selection between these two references is made with parameter REF TYPE SEL (405), logical state 1 selects the current reference.

A current regulation response test can be done by connecting the step reference to input [CURR STEP] (403).
(404) to logical state 1.

The torque reference from the torque reference selector is connected to the current reference by means of the flux reference so that with nominal flux and nominal torque the current reference will be equal to nominal current of the motor. The scale of the current reference is $4095==$ nominal current of motor I MOTN A (502).

The rise time of the current reference can be adjusted by parameter ARM CURR REF SLOPE (406), scaling $1=1 \mathrm{~ms}$. This is used, for example, if a too fast rise time causes problems in the motor commutator.

After the slope the armature current reference goes through the current limiter. Positive/negative limits of the current reference are based on parameter ARM CURR LIM P (2307) and ARM CURR LIM \mathbf{N} (2308) or on a speed-dependent current limitation.

The difference between the ARM CURR REF and the ARM CURR ACT (10502) goes directly to the current regulator. If the difference between these values is larger than 20\% (from nominal 4095) and this situation remains at last 5 seconds, then the ARM. CURR.
DEV. ALARM will be given.

PI-Regulation	The parameters of the PI controller can be set either with the autotuning or manual tuning function. ARM CURR PI KP (407) determines the gain of the regulator and ARM CURR PI KI (408) determines the integral time constant of the regulator.
Scaling of the gain KP	PI-controller input and output values are scaled so that gain value 100% produces in the output the same value as can be seen in the input. This kind of scaling is used in the current controller of the DCS500B.
	$\text { output }=\frac{\text { ARM CURR PI KP* error }}{256}$

So, default value 300 is equal to gain $300 / 256=1.17$ (117\%)
Scaling of the Time Constant KI

Integral gain is calculated from the time constant:

$$
\begin{array}{ll}
\text { ARM CURR PI KI }= & 16384 * \frac{\text { scantime }}{T C} \\
\begin{aligned}
\text { where scantime } & =3.33 \mathrm{~ms} \text { in } 50 \mathrm{~Hz} \text { network } \\
& =2.77 \mathrm{~ms} \text { in } 60 \mathrm{~Hz} \text { network } \\
\text { TC } & =\text { time constant in ms. }
\end{aligned}
\end{array}
$$

Discontinuous Current Point

Parameter ARM CONT CUR LIM (409) is the converter actual current at the point where discontinuous current of the armature circuit changes to continuous current. By using autotuning this point will be defined automatically. In manual tuning the point must be measured from the armature circuit by means of e.g. an oscilloscope. Actual converter current value CONV CUR ACT (10501) is set in parameter ARM CONT CUR LIM (409). There is also a status bit B6 at TC_STATUS (11204), bit value $1=$ armature current is discontinuous.

Figure 22 Waveforms of the armature current

Tuning of Current Regulator	Tuning of the regulator can be done either manually with response tests or with autotuning function, which is activated by setting parameter DRIVE MODE (1201) to 3 , when the drive's main contactor is open. After closing of the main contactor and starting of the drive, the autotuning procedure for the armature current controller will start. The DRIVE MODE (1201) value is set to 0 when autotuning is completed. The autotuning proceeds without user intervention. Motor data have to be set correctly before autotuning is started. More information about tuning can be read in chapter Start-up.
Firing Angle Limitation	The output signal of the regulator is the firing angle reference ($1=$ 1°) ARM ALPHA (10401). Its minimum value is limited by means of parameter:
	The maximum output voltage of the thyristor bridge is limited by parameter ARM ALPHA LIM MIN (413), default value $=15$
	The armature voltage is $\quad U=1.35$ * $U_{\text {SUPPLY }}{ }^{*} \operatorname{Cos} \alpha$, if the current is continuous. $\alpha=$ ARM ALPHA.
	For example, if $U_{\text {SUPPLY }}$ is 400 VAC , the maximum armature voltage is $1.35 * 400 \mathrm{~V} * \operatorname{Cos} 15^{\circ}=521 \mathrm{~V}$.
	The maximum firing angle is limited by parameter ARM ALPHA LIM MAX (412), default value $=150$. Do not change this value without consulting ABB!
Additional Commutation Reserve DXN	The commutation can not take place infinitely fast because of the network reactance. The time for the commutation can be expressed by the commutation angle u, which can be calculated using formula:
	$\mathrm{u}=\arccos \left(\cos \alpha-I_{\mathrm{d}} / \mathrm{I}_{\mathrm{k}}\right)-\alpha$
	where $\quad I_{k}=$ short circuit current $l_{d}=$ load current $\mathrm{U}_{\mathrm{I}}=$ network voltage $X_{I}=$ network total reactance
Example	It is wanted that a "weak" network can commutate 600 A current. The nominal voltage of the network is 380 V and frequency 50 Hz . Used transformer: $\begin{aligned} & 20 \mathrm{kV} / 400 \mathrm{~V}, \quad 500 \mathrm{kVA} \\ & \mathrm{R}_{\mathrm{k}}=0.0032 \Omega \\ & \mathrm{~L}_{\mathrm{km}}=48.85 \mu \mathrm{H} / \text { phase } \end{aligned}$
	Cable: lenght $50 \mathrm{~m}, 250 \mu \mathrm{H} / \mathrm{km}, \mathrm{L}_{\mathrm{kk}}=12.5 \mu \mathrm{H} /$ phase

Network reactance	$\begin{aligned} \mathrm{X}_{\mathrm{k}} & =2^{*} \pi^{*} 50 \mathrm{~Hz} *(48.85 \mu \mathrm{H}+12.5 \mu \mathrm{H}) \\ & =0.019274 \Omega \end{aligned}$
Short Circuit Current	$\mathrm{I}_{\mathrm{k}}=\sqrt{ } 2 * \mathrm{U} /\left(2^{*} \mathrm{X}_{\mathrm{k}}\right)=13941.33 \mathrm{~A}$
	Let's calculate what will happen when DC-drive takes 400 A and β limit is set to 165°.
400 A load	$\mathrm{I}_{\mathrm{d}} / \mathrm{I}_{\mathrm{k}}=400 \mathrm{~A} / 13941.33 \mathrm{~A}=0.0287$
	$\cos 165^{\circ}=-0.966$
	$\cos (\alpha-\mathrm{u})=\cos \alpha-\mathrm{I}_{\mathrm{d}} / \mathrm{I}_{\mathrm{k}}=-0.9946$
	$\operatorname{arc} \cos (-0.9946)=174^{\circ}==>$ OK
600 A load	Same with 600 A current: $I_{d} / I_{k}=0.043$
	$\cos 165^{\circ}=-1.009$
	$\cos (\alpha-\mathrm{u})=\cos \alpha-\mathrm{I}_{\mathrm{d}} / \mathrm{I}_{\mathrm{k}}=-1.009$
	$\operatorname{arc} \cos (-1.009)=$ unspecified $==>$ NOT OK, slip over
DXN	The DXN is proportional network short circuit voltage and it is defined by using the converter nominal current.
	The purpose of DXN is to prevent the slip over of the thyristor bridge by changing the β-limit proportionally to the converter current, if the network is "weak". DXN is calculated:
	DXN (414) $=\frac{2{ }^{*} \times \mathrm{k} * \text { I CONV A }}{\sqrt{2 *} \text { S SUPPLY }}$ * 1000
	Parameter value for DXN (414) in this example is $43=4.3 \%$. Scale: $1=0.1 \%$.

Firing angle example

Figure 23 Armature voltage controlled by firing angle 60°
Note. To avoid shooting through of the converter, the adjusted values of alpha limits should not be changed without consulting ABB.

Status Indication for Bridge

Output connection point ARM DIR (10402) from the firing unit indicates the bridge in use:
$0=$ no bridge, 1 = motor bridge, $-1=$ generator bridge.
Values of the U MOTN V (501), I MOTN A (502) and U SUPPLY
(507) must be given to the program, because these parameters are used for scaling the actual values of e.g. armature current.

Functional Software description

- Field Excitation

With DCS 500B it is possible to use several kinds of field exciters or a combination of them, depending on the application. This paragraph describes available field exciter units. Functions which use field exciters are also explained.

Figure 40 Basic parts of the field excitation

Selection of the Field Exciter

Field Exciter Status

The type of field exciter is selected by parameter FEXC SEL (505)
0 [NO FIELD EXCITER]
No field exciter selected
1 [DIODE FIELD EXCT]
Internal diode field exciter SDCS-FEX-1
2 [FEX2 OR FEX3]
Internal SDCS-FEX-2 or ext. SDCS-FEX-3
3 [FEX3 FOR MOTOR2]
Ext. DCF50x-0050 for motor 2
4 [FEX2/3 + MOT2=FEX3]
internal SDCS-FEX-2 or ext. DCF50x-0050 as first field exciter and external DCF50x-0050 (FEX3) as a second one

5 [FIELD ACK VIA DI]

Other field exciter, acknowledge through DI
6 [FIELD ACK VIA AI]
Other field exciter, acknowledge through AI
Status of the field exciter(s) can be seen from the maintenance function FEXC STATUS (11203).

FEXC STATUS (11203)		
BIT	Internal name	Comment
0	FEXC1_RDY_OPER	0 = not ready for operation (AC-voltage missing)
1	FEXC1_OK	$0=$ selfdiagnostics failed or power failure in fex 1
2	FEXC_2 RDY_OPER	$0=$ not ready for operation (AC-voltage missing)
3	FEXC2_OK	$0=$ selfdiagnostics failed or power failure in fex 2
4	ACK_FEXC1_ON	1 = motor 1 field OK
5	ACK_FEXC2_ON	1 = motor 2 field OK
6	FIELD_HEAT_ON	1 = motor heating function active
7	FIELD1_REV_ACK	direction of the field $0=$ forward, $1=$ reverse
8	ACK_CSC_ON	1 = on-command accepted by sequence control
9	ACK_FEXC_ON	1 = motor field OK

No Field Acknowledge Selected

Internal Diode Field Exciter SDCS-FEX-1

If FEXC SEL (505) $=0$, then the field acknowledge signal has no significance. This case is only for testing purposes. The first field exciter and the second field exciter are used with a "Shared motion" function.

The current setpoint using the FEX1 is selected by selecting an appropriate voltage output from a field transformer. The program does not measure the current value but an acknowledge signal is formed which supervises whether the field exciter has current or not. Other parameter settings are not needed. The acknowledge signal cannot be read directly but if the signal TC_RDY_RUN (11204) bit 2 is zero more than 6 second after ON-command, the drive will trip to the fault: NO FIELD ACK.

Internal Field Exciter SDCS-FEX-2

Acknowledge

External Field Exciter DCF503-0050

External Field Exciter DCF504-0050

AI/DI Connected Field Exciters

Acknowledge Selection

Internal field exciter FEX2 is a half controlled bridge that can control the field current in one (positive) direction. Because of the nature of the half controlled bridge, a very small amount of current (5...10\%) flows always through the bridge if the field contactor is closed. SDCS-FEX-2 is controlled via a serial communication link. FEX2 measures the field current and sends the value to the drive via serial communication.

The measured field current is used to form an acknowledge signal. If the field current exceeds the overcurrent limit, the drive will trip to the fault FIELD EX 1 OVERCURR. A low level of field current blocks the controllers immediately, but the low level must be active at least 6 seconds before the drive will trip to the fault: NO FIELD ACK.

For the control point of view the DCF503-0050 is similar to SDCS-FEX-2. The differences are that DCF503-0050 can handle a higher field current than SDCS-FEX-2, and its mechanical size is larger. The control board type is SDCS-FEX-32.

External field exciter DCF504-0050 can control the field current either to the positive or negative direction. The direction is selected by the sign of the field current reference. A positive sign means "forward" bridge and negative sign "reverse" bridge. The field current supervision logic is handled in the same way as in SDCS-FEX-2. The control board type is SDCS-FEX-31.

When modifying existing machines ("revamping") the old field exciters are often reused. In this case an acknowledge signal must be formed in order to supervise the field function. This can be done using either digital or analog input.

When a digital input is used to form the acknowledge signal, the function is similar to that used with FEX1, the diode field exciter.

The acknowledge signal is selected with the same parameter that is used for selecting the field exciter type. Acknowledge signal is connected to input [F1 ACK] (1304)

FEXC SEL (505)

5 = [FIELD ACK VIA DI]

field acknowledge through DI
$6=[$ [FIELD ACK VIA AI]
field acknowledge through AI

Use of the Ana- Analog input is used when the field current is measured or conlog Input Channel trolled. When controlling an Al-based field exciter, it is also necessary to transfer the reference to the field exciter. This can be done by means of connecting one analog output channel to the signal F1 CURR REF (11301). The scaling of the used analog output must be arranged so that the value 4096 corresponds to the rated nominal excitation value as a voltage reference. The field current actual signal must also be scaled so that the scaled input value is 4096 with rated field current.

Calculation Ex- For example, the field exciter nominal current is 32.5 A , which corample responds to the 7 V field current actual measurement. The connected analog input channel is AI3.

Set:

CONV MODE (110) = 1
HIGH VALUE (111) 4096*10V/7V = 5851
LOW VALUE (112)
$-4096 * 10 \mathrm{~V} / 7 \mathrm{~V}=-5851$

$$
=3250
$$

For more information on how to scale the $\mathrm{Al} / \mathrm{AO}$, see paragraph Digital and Analog I/O.

Two Field Exciters at the same time

Field Current Settings

When the same converter controls two motors as a "shared motion", the armature unit is switched between two motors by means of an extra contactor. Both motors have still their own field exciters. In the documents the main motor field exciter is called the "first field exciter" and that of the second motor the "second field exciter".

Only the "first field exciter" can be current controlled and gets it's current reference from the EMF CONTROL function block. The "second field exciter" always uses either a fixed field current level or a variable one, generated by an analog input or a similar function.

Motor standstill heating function can be used on the not-used motor by giving a small field current reference to the field exciter.

The nominal field current must be given to the program in order to have a correctly controlled field. Usually there is no need to change maximum and minimum levels.

The nominal current of field exciters are set with parameters
I MOT1 FIELDN A (503)

$$
100=1 \mathrm{~A}
$$

I MOT2 FIELDN A (504) $100=1 \mathrm{~A}$

The minimum field current levels are set with parameters
F1 CURR GT MIN L (1305) 4095 = rated current F2 CURR GT MIN L (1502) $2047=50 \%$ of rated current

In field weakning applications minimum field current limit must be checked. Parameter value must be below the minimum field current.

The overcurrent level is set with parameters
F1 OVERCURR L (1306) $4095=$ rated current F2 OVERCURR L (1503) $\quad 4710=115 \%$ of rated current

Free Wheeling Function

Trigger Point Setting of the Free Feeling Function

Filter for Actual Field Current

Ext. DCF50x-0050 has a free-wheeling function to give a path for the current if the AC-input voltage disappears for some reason, e.g. the field contactor opens. When this happens, the current does not stop but tends to increase the voltage of the field excitation unit very rapidly .

The AC input voltage is measured, and if the value changes too fast, the field excitation unit fires two selected thyristors continuously open to provide a path for the current. The sensitivity for starting the free-wheeling function can be adjusted by means of the following parameters

F1 U AC DIFF MAX (1310)

F2 U AC DIFF MAX (1507)
Scaling is in \% $1=1 \%$.
The initial value is 10% which means that the free-wheeling function starts if the two successive AC-voltage measurements in field exciter differ more than 10%.

The field exciter unit has a filter for smoothing the actual field current measurement. The filter has no influence on the PI-controller but only on the measured signal transferred to the drive software. The filter time constant should not be set too high because the same signal is also used for minimum and overcurrent supervision of the field exciter unit.

F1 CURR TC (1307) (scaling $1=0.01 \mathrm{~s}$) F2 CURR TC (1504)

Field Current Controller

Field Reversal

The current controller of the field excitation unit is located inside the field excitation unit. Some parameters are accessible via serial communication if the current controller needs manual tuning. The current controller is a Pl-type controller that has parameters for P gain and I-time constant.

P-gain parameters:
F1 KP (1308)
F2 KP (1505)
Scaling: input 4095
P 1
output 4095
I-time constant parameters:
F1 KI (1309) Scale: $1=10 \mathrm{~ms}$
F2 KI (1506) Scale: $1=10 \mathrm{~ms}$
The maximum output voltage of the PI-controller can be limited by means of two parameters. When the bridge is fully open the output voltage is 0.9 * VAC. This equals the limit value 4095. The limitation is linear so $2048=0.5^{*} 0.9$ * VAC.

F1 U LIM N (1311) negative limit
F1 U LIM P (1312) positive limit
F2 U LIM N (1508) negative limit
F2 U LIM P (1509) positive limit
Field reversal is needed when the drive has only one armature bridge (two-quadrant). This gives the possibility to change the speed direction and also to regenerate the energy back to the network. The sign of the torque reference in armature control defines the direction of the field.

Figure 41 Field reversal braking principle

Activating

Field direction change hysteresis

Force field direction

Field monitoring when changing direction

The field reversal function is enabled by means of parameter FIELD MODE (1001)

0 [CONSTANT F] no EMF-control
1 [EMF, NO FIELD REV] EMF-control without field reversal

2 [NO EMF, FIELD REV]
3 [EMF + FIELD REV]
4 [NO EMF, OPTITORQUE]
5 [EMF + OPTITORQUE]

Field reversal
Field rev. + EMF-control
Field rev. + OPTITORQUE
Field rev. + OPTITORQUE + EMF-control

On a four-quadrant drive the field reference value is always positive 100% (4095). If the EMF-controller is activated, the field current is controlled but it still can never be larger than 100%.

To avoid a too sensitive field reversal function when the torque reference value is close to zero, a parameter is needed to form a hysteresis around the zero torque reference. The hysteresis is symmetrical around zero. For exampe, the hysteresis value is 80 . The drive will change to reverse field when the torque reference is 80 or smaller. Back to forward field the drive can change when the torque ref is +80 or larger.

REV.REF HYST (1319) (default 80)

It is possible to force the drive to use a specified field direction. This gives the user the possibility to allow a change of field direction only when it is needed. For example, it is known when the drive must really change the direction of speed. Using the force-command makes the drive less sensitive to the value of the torque reference. Two inputs are defined for forcing the field direction:

[F1 FORCE FWD] (1302)

[F2 FORCE REV] (1303)
Normally the field current is compared with the minimum level and if the current falls below the limit, all the control functions are blocked and the drive goes to state RDY RUN $=0$ and RDY REF $=0$. During the field change the situation differs. The current can be below the minimum field level for a certain time because the field current must pass over zero.
In the process of field changing the current controller and the speed controller I-part are blocked and the speed ramp output is updated by the actual speed value.

The field current must change direction during a period of 2 sec , otherwise signal ACK_FEXC1_ON goes to 0 and RDYRUN and RDYREF are set to 0 .

Following parameters are needed to supervise the function:
F1 CURR GT MIN L (1305) Defines the minimum level for the field current

REV.REV HYST (1318) The sign of the torque reference defines the field direction. Actual field direction is based on comparison of field current reference and actual. The hysteresis is used in actual current measurement when field reversal acknowledge signal is produced.

REV.FLUX TD (1320) If real FLUX of the motor does not follow rapidly the field current, e.g. in very old DC-motors, it can be necessary to make an extra delay for defining the field direction. Normally this time can be 0 .

Following signals are needed for the controllers and for some measurements:

Bit 5 of TC_STATUS (11204) is the TC_FIELD_CHANGE indication and during field reversal this signal blocks the armature current controller, the I-part of the speed controller and updates the speed ramp output with a measured speed value.

Opti-Torque
The time that is normally needed for changing the field direction is quite long because of the big inductance of the field winding. This time can be reduced in certain cases by using the OPTI-TORQUEfunction.

Figure 42
Optitorque function compared with normal field reversal

If the type of the process is such that before the field reversal only a small torque is needed, e.g. changing of the speed direction, it is possible to reduce the field current before the field reversal is activated.

This technique enables for a faster field reversal. The permissible reduction in the field current can be defined by the required torque reference. For example, if the speed direction is changed rather slowly, the required torque can also be quite small, close to zero speed, and so the motor field can also be reduced.

Selection of OPTI-TORQUE

The OPTI-TORQUE can be selected by the parameter: FIELD MODE (1001)

4 [NO EMF, OPTITORQUE] Field rev. + OPTITORQUE
 5 [EMF + OPTITORQUE]
 Field rev. + OPTITORQUE + EMF-control

Field current re- The relationship between torque reference and field current referduction using torque reference ence is defined by parameter OPTI.REF GAIN (1315) (range 0...10000).

OPTI.REF GAIN * Torque reference
F1 CURR REF (11301) =

Field monitoring when OPTITORQUE changes the field direction

Field current / FLUX linearisation

Value 100 means that field current is directly proportional to torque reference. When a 10% torque reference is wanted to produce full field current, OPTI.REF GAIN (1315) is set to 1000.

Field monitoring differs from normal field changes in that during field reversal other controllers are not blocked. The bit 5 TC FIELD
CHANGE in TC STATUS (11204) is kept in zero. The minimum field signal is normally delayed by two seconds, and this is a fixed delay. Because the time that the field current remains below the minimum level is also a function of the torque reference, and the torque reference depends on the process and the speed controller's gain values, two seconds may be too short a time in some applications.
For this reason the minimum field monitoring is by-passed, if the field current reference falls below a certain level. Two parameters are needed for defining the threshold to the reference when minimum level is by-passed.

OPTI.REF MIN L (1316) $\quad 614=15 \%$ of nominal When the field reference falls below this limit, the minimum field monitoring is by-passed.
OPTI REF MIN TD (1317) $\quad 1000=1 \mathrm{~s}$
This is an additional delay to keep the by-passing activated after the field current has again increased above the reference level. The field reference cannot be below the limit OPTI.REF MIN L (1316) longer than this time when OPTI-TORQUE function is active or the field reversal is done.

When an extremely accurate control of torque is needed, e.g. on unwinder section of winder, the field current has to be linearised. The reason is that torque is the product of motor armature current and motor FLUX but motor FLUX is not directly proportional to the field current.

Figure 43 Flux of DC-motor as a function of field current

Abstract

Saturation The motor starts to saturate after a certain field current, and thus the relation of field current and motor flux is not linear. For this reason the field current cannot be directly used to define FLUX inside the motor. On the other hand, the motor armature voltage without load (= EMF) is directly proportional to the motor flux and motor speed below the field weakening area.

For example, if the motor nominal DC voltage is 440 V , and we are running the motor at half speed and full FLUX, then the DC voltage is about 220 V . Then, if we reduce the flux to 50% and keep the same speed, the DC voltage is about 110V. (This is only an example!)

Because the motor EMF-voltage is directly proportional to motor FLUX it is possible to define the relationship between the field current and the motor FLUX by measuring the motor armature voltage without load (EMF).
The main idea for linearisation is to find a field current that produces the desired EMF-voltage at a certain speed. Linearisation is done with a function block that needs three defined values, field currents for a $90 \%, 70 \%$ and 40% flux. The other values are interpolated. During the commissioning the values must be defined for the function block if the EMF-controller is to be used. Only the EMFcontroller uses the linearisation function.

Linearisation procedure

Field reduction when at standstill
see OPERATING INSTRUCTION

The motor field can be reduced during standstill in order to avoid overheating when the motor is not running. The function can be activated by means of two parameters:

F1 RED SEL (1313) Selection for the first motor
F2 RED SEL (1510) Selection for the second motor in the case of shared motion.

The used current reference can be selected by means of two parameters:

F1 RED REF (1314) F2 RED REF (1511)

Reference for the first motor
Reference for the second motor in the case of shared motion.

The function is activated when

- "ON"-command is "1", ie., the main contactor is closed
- the drive is in RDY RUN state.
- 10 seconds has elapsed.

Field heating when in "OFF"state

EMF_CONTROL

 function blockThe motor field can have a small value in order to avoid condensation when motor is in "OFF"-state. The function can be activated by means of parameter:

FIELD HEAT SEL (914)

The used current references are the same as with the field reduction function:

F1 RED REF (1314) reference for the first motor
F2 RED REF (1511)
reference for the second motor in the case of shared motion.

The function is activated when command "ON" is 0 , ie., the main contactor is open. The function closes the field contactor.

Figure 44 Field weakening as a function of speed

The Purpose of EMF Controller

The EMF-controller has two main control functions:

1. When the motor is run above the base speed, the EMFcontroller reduces the motor field to keep the EMF-voltage constant at a maximum level. This must be done to avoid armature overvoltage and on the other hand, a maximum EMF is needed to keep the FLUX as high as possible.
2. When an accurate torque controller loop is needed, the EMF controller can be used to form an accurate FLUX value. The application program in the DCS 500B calculates the required value of the motor EMF at the used speed and used FLUX reference. The EMF-controller then adjusts the field current so that the measured EMF corresponds to the EMF-reference.

Selection of EMF-control
 The EMF-control function can be activated by means of parameter FIELD MODE (1001)

0 No EMF-control (constant field) without field reversal
1 EMF-control without field reversal
2 No EMF-control (constant field) with field reversal
3 EMF-control with field reversal
4 OPTITORQUE without EMF-control
5 OPTITORQUE with EMF-control

Field reversal is normally used on two-quadrant drives. The field exciter must also be such that the field current can be controlled, e.g. SDCS-FEX-2, DCF50x-0050 or DCF500/DCF700.

Resistive and inductive voltage drop

Field weakening area

To enable an accurate control, the EMF-voltage must be calculated. Without load the measured DC-voltage equals about the EMF but when the motor is loaded, the EMF starts to decrease because of losses in the motor. The EMF is calculated for the controller using the formula:

$$
\text { EMF } \quad=U_{d c}-\left(R_{A} * i+L_{A} * d i / d t\right)
$$

where
RA = armature resistance in ohms
LA = armature inductance in mH
i $\quad=$ armature current
$\mathrm{U}_{\mathrm{dc}} \quad=$ measured armature voltage
For more information see paragraph Speed Measurements.
Above a certain speed the motor FLUX must be reduced in order to avoid armature overvoltage. This area is called the "field weakening area" and the speed where the field reduction starts is called the "field weakening point". Above the field weakening point the motor FLUX is reduced by ratio $1 / n$. Two parameters are needed to carry out the function:

Figure $45 \quad$ The flux as a function of speed

erroneous result.
The limit at which the I-part is released can be defined by parameter:

EMF REL LEV (1011)
default value is 50
(100 * $50 / 3786=1.3 \%$)

EMF-error value filter

PI -gain value scaling

PI - controller output limitation

The EMF actual value can be filtered for the controller by means of 1 st order filter. The time constant of the filter can be given by parameter

EMF FILT TC (513) scaling $1000=1 \mathrm{~s}$
(0...10000)

P -gain of the controller is reduced above the field weakening point by the factor $1 / n$ in order to keep the process gain constant. P -gain can be adjusted by means of parameter

EMF KP (1007) Scaling is internal unit
$277=100 \%$
(1...999)

I-time constant does not have $1 / n$ scaling factor, and it is separated from the P-gain value. Time constant $=147200 /$ EMF KI and it can be adjusted by means of parameter

EMF KI (1008) Scaling is internal unit

 $20000=7.4 \mathrm{~ms}$The output of the Pl-controller is limited so that 100% of final FLUX reference is the absolute maximum value. The positive level of the PI-controller is limited so that at exactly the field weakening point the positive limit is zero. Above the field weakening point the positive limit starts to increase to facilitate a smooth transfer to the field weakening area.

Limits for the PI-controller can be adjusted by means of parameters

EMF REG LIM P (1009)	4095	X
	+410	= default (+10\%)
EMF REG LIM N (1010)	-4095	= -nominal FLUX

$+410=$ default ($+10 \%$)
$-4095=-$ nominal FLUX $=$ def.

- Protections

CONVERTER_PROTE

 CTION function blockNetwork voltage measurement

The measurement/calculation of network voltage is based on the nominal voltage of the converter, nominal voltage of the supply and the voltage measurement as follows:

$$
U \text { NET ACT }(10504)=\frac{U_{\text {measured }} * U C O N V V(10511)}{U S U P P L Y(507)}=e . g . \frac{3276 * 500}{400}=4095=100 \%
$$

400 V supply \quad Note. DCS 500B converter module is exactly the same for 400 V and 500 V supply. Voltage measurement scaling is constant $500 \mathrm{~V}=$ 4095. U CONV V (10511) signal value must be 500 also for 400 V supply (software reads this value automatically from the SDCSPINxx board when C1, C2 or C3 modules are used).

Network under- The nominal net voltage is defined in U SUPPLY (507). The upper voltage

Network overvoltage

Overcurrent can be read out from the signal
I TRIP A (10510) (scale $1=1 \mathrm{~A})$
If there is a need to reduce this limit, it can be done with the parameter:
ARM OVERCURR LEV (512)
scale: 100 = nominal current of converter I CONV A (10509).

When the level is adjusted, the signal I TRIP A is updated automatically.

Note. With converter type C4 the nominal values must be given to the program with parameters 517... 521.

When the overcurrent limit is exceeded, an OVERCURRENT-fault will appear (fault code 2).

Over temperature

Earth Fault
The maximum temperature of the bridge can be read out from signal MAX BR TEMP (10512), scale: $1=1^{\circ} \mathrm{C}$. If this limit is exceeded, a CONVERTER OVERTEMP-fault will occur. The alarm limit is $10^{\circ} \mathrm{C}$ below the tripping limit. Actual bridge temperature is given by signal BRIDGE TEMP (10507), (scale $1=1^{\circ} \mathrm{C}$).

With converter type C4 the maximum temperature of the bridge must be given to the program with parameter 519 .

Earth fault indication is based on a sum current transformer in the supply. The sum of three phase currents is zero, if there is no earth current.

Figure 46 Principle of earth fault current measurement
Earth fault protection is activated by parameter EARTH.CUR SEL (514).
$0=$ not used
1 = activated
Earth fault current tripping level is defined by parameter
EARTH.FLT LEV (515).
(scaling in amps)
The time after which fault is activated is defined by parameter
EARTH.FLT DLY (516).
(scaling 0.001s)

MOTOR_1_PROTECT

ION function block
MOTOR_2_PROTECT
ION function block
Measured Motor Temperature

Measurement selection

The temperature measurement of the motor is usually measured via analog inputs Al2 and Al3 of the DCS 500B. The temperature measurement consists of Motor 1: [TEMP IN] (1401) and Motor 2: [TEMP IN] (1601) channels with alarm and tripping limits. These channels can be used for temperature supervision of both motors or of one motor and e.g. the bearings.
If temperature measurement elements are used, the temperature value can be monitored either in Celsius degrees (PT100) or in ohms (PTC). It is also possible to use external temperature measurements and therefore give temperature information by means of current (mA) or voltage to the analog inputs.

When the motor temperature is measured using PT100, PTC or some other type of measuring element, the right type of measuring must be selected. If the PT100 elements are used, the respective number is given (1...3). See the parameter Alx CONV MODE (xxx) in AI2 and Al3 -function block.
When PTC measurement is selected, the conversion result is scaled as a resistance value.

Also the jumpers of the input voltage range and current generator must be set correctly in all cases. The SDCS-IOB3-card has only one current generator; if two temperature measurements are used, the elements of both channels have to be connected in series.

MOT1.[TEMP IN] (1401) is the input for measured temperature from motor 1.
MOT2.[TEMP IN] (1601) is the input for measured temperature from motor 2.

Figure 47 Two PT100 sensors in a common current source

Alarm and tripping limits

See the jumper settings of the input range and constant current generator in Chapter 2 "Standard hardware description". See also paragraph "Analog Inputs" in this chapter.

There are parameters for thermal measurement (PT100, PTC) alarm limit and tripping limit. If the measured temperature reaches the value set in the alarm parameter, the program gives an alarm indication, MOTOR 1 TEMP. ALARM / MOTOR 2 TEMP. ALARM. If the temperature keeps on rising and reaches the tripping limit, the program trips the drive and gives a fault indication MOTOR 1 OVERTEMP. / MOTOR 2 OVERTEMP. Overtemperature fault belongs to tripping level 2 , which means that in case of overtemperature the main and field contactors will open. Fans keep running until temperature falls below the alarm limit.

In the PT100-measurement the alarm and tripping limit parameters are set directly as Celsius-degrees. In the case of thermistor measurement (PTC) the limits are set as resistance values, ($0 . . .4000$ ohms). The alarm limits are set into parameters:

Motor 1: MOT1.TEMP ALARM L (1402)
 Motor 2: MOT2 TEMP ALARM L (1602)

The temperature tripping limits can be set by the:

Motor 1: MOT1.TEMP FAULT L (1403)
 Motor 2: MOT2 TEMP FAULT L (1603)

If the above parameters are set to zero, the alarm and tripping limits will not be supervised.

Example:

Analog input channel 2 (Al2) has been selected for PT100measurement of the motor windings (3 elements), and the analog input channel 3 (AI3) has been selected for PT100-measurement of the motor bearings (2 elements). It is supposed that the alarm and tripping limits of the motor winding are $110^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$. The alarm and tripping limits of the bearings are $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. The settings in this case are:

AI2 CONV MODE (107) $=5$
Al3 CONV MODE (110) $=4$
MOT1.[TEMP IN] (1401) $=10107$ (connect to output AI2: 10107)
MOT1.TEMP ALARM L (1402) $=110$
MOT1.TEMP FAULT L (1403) $=120$
MOT2.[TEMP IN] (1601) = 10110 (connect to output AI3: 10110)
MOT2.TEMP ALARM L (1602) $=40$
MOT2.TEMP FAULT L (1603) $=50$

Motor Protection by means of the switch

Note:

HIGH VALUE and LOW VALUE parameters in Al function blocks are not in use when Al output is defined in ${ }^{\circ} \mathrm{C}$ or in ohms (Ω).

Jumper settings of SDCS-IOB3-card are made such that the input voltage range in both channels is +/-10V.

DC-motor temperature protection can also be supervised by means of the temperature switch in the DC-motor. The contact of the switch opens in a certain temperature. The connection to the software is by means of the digital input,and the input signal [KLIXON IN] (1404) is used in software. When the input state changes from 1 to 0 , the overtemperature trip will be activated.

Figure 48 Overtemperature protection by means of the thermal switch.

Motor thermal model
The DC-motor must be always protected against overtemperature. If a direct temperature measurement of the motor is not available, the thermal model of the motor can be used when the current limits of the drive are set higher than the nominal motor current.

In the DCS500B there are two thermal models available that can be used at the same time. By means of input signal [MOTOR2] (913) the measured armature current is directed to the correct model.

Figure $49 Q_{\text {act }}$ as a function of different loads
Previous figure shows how $Q_{\text {ACT }}$ (motor's thermal capacity) is formed of rising and falling sections of the time constant function. On curve $0-A-C-D$ an overload trip occurs at point D owing to a too short time constant even though the heating up clearly does not reach the limit $Q_{A C T}=100 \%$ which corresponds to the motor's thermal capacity.

In point A acceleration does not yet cause a trip because a cold start was made

On curve 0-B-C-E-F-H the desired loading cycle can be repeated as many times as necessary because its time constant is sufficiently long.

The temperature rise of the motor behaves as a time constant which is proportional to the motor current in power of two.

$$
\begin{equation*}
Q_{\text {act }}=\frac{\text { lact }^{2}}{I_{\text {ref }^{2}}} *\left(1-e^{-t / \tau}\right) * 100 \tag{1}
\end{equation*}
$$

where:

$Q_{\text {act }}$	thermal value
$l_{\text {act }}$	motor current actual
Iref $^{\tau}$	reference current, normally rated current of motor
τ	temperature time constant.
100	scaling factor
t	time

Thermal model selection

Alarm and tripping limits

Preloading Formulas 1 and 2 do not take into account the thermal preloading which in practical cases precedes currents that are higher than the rated current. In the model these can cause a trip. Preloading current is I_{0}.

$$
\begin{equation*}
Q_{\text {act }}=\frac{\operatorname{lact}^{2}-I_{0}^{2}}{I_{\text {ref }^{2}-I_{0}}} *\left(1-e^{-t / \tau}\right) * 100 \tag{3}
\end{equation*}
$$

When the motor is cooling, the temperature model follows the formula

$$
\begin{equation*}
\left.Q_{\text {act }}=\frac{\text { lact }^{2}}{\text { Iref }^{2}} * e^{-t / \tau}\right) * 100 \tag{2}
\end{equation*}
$$

As can be seen from formulas (1) and (2), the thermal model uses the same time constant for a warming motor and a cooling motor. Pre.

The activation of thermal model is made by parameters MODEL1.SEL (1405) and MODEL2.SEL (1605). If the thermal model is not activated (0), its output is set to zero.

Input signal [MOTOR2] (913) selects which of the thermal models follows the armature current measurement.
[MOTOR2] (913)
0 = MODEL 1 follows the armature current measurement
1 = MODEL 2 follows the armature current measurement
One thermal model thus follows the armature current and the other is cooling.

Alarm and tripping limit calculation uses as the base current (Iref) the values given by parameters

MODEL1.CURR (1406)
MODEL2.CURR (1605)
The normal value is 4096 (\cong motor rated current). This value should not normally be changed. If for some reason it is not possible to run the motor continuously with rated current, e.g. due to poor cooling environment, then the value can be decreased. E.g. the target continuous load is 85% of the used motor rated current. Then the parameters are 0.85 * $4096=3481$.

Thermal time constant

Alarm and tripping limits can be selected by means of four parameters

MODEL1.ALARM L (1407)
MODEL1.TRIP L (1408)
MODEL2.ALARM L (1506)
MODEL2.TRIP L (1507)

Initial values are selected so that the overloadability is quite high. For example, the current must continuously be $\sqrt{ } 120$ * $100=109.5$ \% before alarm is given and for trippings the current must be $\sqrt{ } 130$ * $100=114$ \%.

Recommended value for alarm is $90 . . .100 \%$ and for tripping 106...110\%.

MODELx.ALARM L (xxxx) = (alarm \%2/100) MODELx.TRIP L (xxxx) = (trip \% $2 / 100$)

Example. The tripping limit is $106 \%-->$ MODELx.TRIP L (xxxx) = 112

Time constants for thermal models are given by two parameters
MODEL1.TC (1409)
MODEL2.TC (1608)

It has to be noted that the thermal time constant cannot be used directly when calculating the tripping time. Often the motor manufacturer presents a curve that defines how long the motor can be overloaded with a certain overload factor. Parameters MODEL1.TC (1409) and MODEL2.TC (1608) can be selected by means of figure on the next page.

Figure 50 Example of motor loadability curve.
Note. This is an example and does not necessarily correspond to any actual motor.
Example:
The drive should trip if motor current rises above 170% of motor nominal current for a time longer than 1 minute. Motor's preload is 50% of nominal armature current. See the following figure. Parameter MODEL1.TC (1409) value is $\mathbf{1 5 0}$.
Selected tripping base level is 106%. MODEL1.TRIP L (1408) = $106^{2} / 100=102$.

Figure 51 MODELx.TC selection curves with tripping base level 106%.

- Brake Control

Safety

BRAKE_CONTROL function block

Holding Torque

Brake Release

Minimum Speed Indication

Brake Acknowledge

Specific drives such as hoisting or travelling drives must keep in their current position even the regulator switched off. Control of the brake and converter has to be synchronised to avoid moving of load when the brake is released. The motor has to produce a holding torque before a release command is given to the brake. DCS 500B has a full sequence control for a mechanical brake provided by the BRAKE CONTROL function block. It is designed to operate in co-operation with speed controller.

If a fault has occurred or watchdog trips in control board SDCS-CON-2, the brake is immediately controlled to close state (LIFT BRAKE (10304) = 0).

If emergency stop is activated, the function of brake can be defined by parameter EMESTOP BRAKE (307):
$\mathbf{0}=$ DISABLE (brake is closed when speed is zero)
$\mathbf{1}=$ ENABLE (brake is closed immediately)

Holding torque reference can be connected to input [HOLD REF] (301) from the application or analog input. If constant holding torque is used, it can be set with parameter HOLD TORQ (307). If [HOLD REF] (301) is not connected, the reference is defined by parameter HOLD TORQ (307).

The mechanical brake is released by means of input
[BR RELEASE] (302). The RUN command from the output of digital input is normally connected to here.

Input [MIN SP IND] (303) is the minimum speed indication for the block. This input should be active when actual speed of the drive is below the minimum speed limit. Minimum speed indication is available from the SPEED MONITOR function block or it can be generated by external device or DCS 500B function block application

The brake released acknowledge can be connected by means of digital input to input [ACK BRAKE] (304) in BRAKE CONTROL function block. Otherwise acknowledge is done in software by connecting [ACK BRAKE] (304) directly to brake release command LIFT BRAKE (10304).

Start Delay	After the start command is given with BR RELEASE-input and the actual torque has reached the holding torque level, the LIFT BRAKE output is set. After that during the time START DELAY (304) the DECEL CMND is active keeping the speed reference in zero. When start delay has elapsed, speed controller and ramp ge- nerator are released. (scaling: $1=0.01 \mathrm{~s}$).
Stop Delay	Stop delay is set equal to the closing time of the brake. When BR RELEASE command is removed, the BRAKE CONTROL - function block will reset the input of RAMP GENERATOR with DECEL CMND. When actual speed is low enough, the MIN SP IND - input is set active. Then LIFT BRAKE - command is removed and during stop delay, the BRAKE RUN - command will keep the speed controller operating with zero speed reference. When STOP DELAY (305) has elapsed, the BRAKE RUN - command is remo- ved. The mechanical brake is now holding the load by itself. (scaling: 1 = 0.01s)
Function	Following figure shows the timings of the BRAKE CONTROL in ca-
se of starting and stopping.	

Figure 51 Brake control function

Figure 52 Brake control example connection

TREF OUT TREF OUT (10301) is a output for torque reference which is used when the brake is opened. This is normally connected to SPEED CONTROL [BAL REF] (2009). This torque reference is set to integral part of speed controller by means of TREF ENABLE output

TREF ENABLE Logical output TREF ENABLE (10302) is activated when the BR RELEASE changes $0-->1$ and is removed when START DELAY has elapsed.
0 = TREF OUT (10301) is zero
-1 = TREF OUT (10301) is used as torque reference
DECEL CMND Logical output DECEL CMND (10303) is used to control the speed reference. It is active until acceleration starts when brake is released and it is activated again when [BR RELEASE] (302) changes 1--> 0 . By means of this output the speed reference of ramp generator input is connected to zero before acceleration starts and after stop command is given.

LIFT BRAKE Output LIFT BRAKE (10304) is used to open the mechanical brake when the motor is able to produce torque (torque act = TREF OUT).

BRAKE RUN Output BRAKE RUN (10305) is used for controlling one of input signals RUN1, RUN2 or RUN3 in DRIVE LOGIC to give a RUN command for the converter.

岕要
杵㐍

蓌
蒋妾
罂

- Extended inputs / outputs

The AI3 and AI4 blocks represent another 2 analog inputs which have as yet not been assigned to any particular functions. The blocks AI5 and AI6 represent another 2 additional inputs which are only active, if the board SDCS-IOE1 is connected. Another 7 digital inputs DI9 ... DI15 are available with this additional hardware.

General: please see chapter General

- Serial link via FIELDBUS

If analog and digital signals are not sufficient for the control or the status of the drive a serial link based on serial communication modules may be a possibility to imcrease the number of information or the accurracy of the signals. The type of module is activated by means of the block FIELDBUS. The data transferred from the control to the converter are stored in the blocks DATASET 1 and 3 as a 16 -bit-information. Depending on the application the output pins of these blocks have to be connected to input pins of other blocks in order to transport the message. The same procedure is valid for blocks DATASET 2 and 4, if they are connected. These blocks are transmitting information from the converter to the control system.

There are several different communication adapter available:

- NPBA-02 for serial links, based on PROFIBUS
- NCSA-01 for serial link to ABB PLC type CS31 / AC31
- NMBA-01 for serial link, based on MODBUS
- NMBP-01 for serial link, based on MODBUS PLUS
- FCI for serial link to ABB PLC via AF100 bus
- no module for serial link to ABB PLC type AC70

General: please refer to the documentation describing the serial link module and the Description of the drive-specific serial link interconnections

Some of these modules have been updated in the past. They are available with different software versions. The next table shows the compatibillity (modules marked with * should be used together with this converter software):

- NPBA-02; software version 2.1
- NPBA-02; software version 2.2 *
- NCSA-01; software version 1.5 *
- NMBA-01; software version 1.5 * (supports multilink)
- NMBP-01; software version 1.5 * (no parameter exchange)
- FCl ; software version 1.3 *
- AC70; software version 1.1-1 *

The 12- pulse parallel connection produces the following advantages:

- reduction in power converter's effects on the mains supply network, like reduced harmonics and different frequencies
- large output DC currents; doubling of the output current due to parallel connection of two 6-pulse standard power converters
- improved current ripple; less amount of current ripple, higher frequency and smaller torque pulsation

Basically, the 12 -pulse connection is a classical master-slave configuration with a speed controlled 6-pulse master power converter and a current controlled 6-pulse slave power converter. In addition to these 2 identical power converters one field supply unit is needed, which is controlled by the master.

The 12-pulse parallel connection is obtained by feeding the slave with a mains supply offset by 30 degree compared to the master and joining the power converter outputs on one side over a Treactor (interface choke, 12-pulse choke, ...)

The 12-pulse mode has been implemented in the standard software and will not become operative until parameterization is done. After a few signals have been replaced for switch-on and switch-off, and the specific master/slave parameters have been set, the two power converters will work in the usual way. The only distinctive feature compared with the classical 6-pulse version is that the two power converters are synchronized for reversing the bridges.

Depending on the application and the type of converter (2 or 4 quadrant type) the final configuration is different:

- at 2 quadrant systems:
the 12-pulse function block remains unchanged; the current reference is taken out of the master and feed to the slave via analog output - input;
see separate documentation MASTER - FOLLOWER 1.1
- at 4 quadrant systems:
the 12-pulse function block is used; the parameters need to be set and the pins need to be connected;
see separate documentation DCS 500 Planning and Startup for 12 Pulse Power Converters

Functional Software description

- Data Logger

DCS500B also includes a datalogger for measurements. Data logger has six logging channels. The capacity of each channel is 1000 samples.

DATA LOGGER func-
Data logger consists of six logging channels tion block

DLOG1.[IN] (601)
DLOG2.[IN] (602)
DLOG3.[IN] (603)
DLOG4.[IN] (604)
DLOG5.[IN] (605)
DLOG6.[IN] (606)
The capacity of each channel is 1000 samples. These channels can be used to collect fast incidents from the DCS500B within a certain time. The total collection time (1...1000s) can be set with a sampling interval parameter DLOG.SAMPL INT (610) (1...1000ms). This collection time is common for all the channels.

Channels can be examined in graph/numeric form with the CMT/DCS500 Tool.

Selection of the parameter/signal index to be sampled in the data logger channels $1 . . .6$ is made by setting the index to the desired connection point DLOG1.[IN] (601) ... DLOG6.[IN] (606).

Selection of the trigger condition is made by means of the parameter DLOG.TRIGG COND (607) as follows:

0 = external triggering
1 = fault + external triggering
2 = triggers when the difference between two successive values of data logger channel 1 is larger than the value defined in DLOG TRIGG VALUE (608)
3 = triggers when the value in data logger channel 1 exceeds the value which is defined in DLOG TRIGG VALUE (608)
4= triggers when the value in data logger channel 1 falls below the value which is defined in DLOG TRIGG VALUE (608).

Note! Function blocks can be used to generate more complex triggering conditions.

Number of samples after triggering can be defined by means of parameter DLOG.TRIGG DELAY (609), 0 ... 1000.

Example:

The data logger is used to monitor the speed difference during a speed response test. The measurement points are [STEP] (2002), STEP RESP (12003). Triggering will take place when [STEP] (2002) exceeds the set limit e.g. 10 (given step e.g. 100).

Settings:

DLOG1.[IN] (601) connect to 2002
DLOG2.[IN] (602) connect to 12003
DLOG.TRIGG COND (607) = 2,
triggers when the difference between two successive values of data logger channel 1 is larger than the value defined in DLOG.TRIGG VALUE (608).

DLOG.TRIGG VALUE (608) = 10
DLOG.TRIGG DELAY (609) $=800$
200 samples before and 800 samples after the triggering.
DLOG.SAMPL INT (610) $=3 \mathrm{~ms}$, samples are taken 0.6 s ($200 * 3 \mathrm{~ms}$) before and $2.4 \mathrm{~s}\left(800^{*} 3 \mathrm{~ms}\right)$ after triggering. Resolution must be observed in setting of the sample interval; a too long interval causes losses in the waveform during fast changes of the measured signal.

The status of data logger can be read out from parameter DLOG STATUS (10601).
$0=$ logger is empty
1 = logger is collecting data
2 = a trigger has occured
3 = logger has stopped after a trigger
4 = logger has stopped after a stop command
$5=$ logger has stopped after a trigger and stop command

- User Event

Events can be programmed to DCS 500B software by using USER EVENT function blocks.

Input [IN] activates logging of an external alarm or fault into the Fault Logger when state is 1.

Parameter TYPE selects the type of external event:

$$
\begin{aligned}
0= & \text { FAULT: TRIPLEVEL } 1 \text { (main, field and fan contactors are } \\
& \text { opened } \\
1= & \text { FAULT: TRIPLEVEL } 2 \text { (main and field contactors are opened } \\
2= & \text { FAULT: TRIPLEVEL } 3 \text { (main contactors is opened } \\
3= & \text { ALARM } \\
4=\text { EVENT } & \text { (only alarm indication) }
\end{aligned}
$$

Parameter DLY (delay) selects the activation delay. External event has to be active for longer than the activation delay time until it is accepted.

- Diagnostics

FAULT HANDLING function block

Fault and Alarm signals

Fault Word bits
Alarm Word bits

Fault Logger

If a fault or an alarm has occurred, an error code is generated. These codes are transferred to the fault logger (maximum 100 error codes with occurrence time). This fault logger can be examined for previous fault and alarm codes by means of the control panel or CMT/DCS500 Tool.

In the event of a supply voltage failure, the program stores the data of the fault buffers and data loggers to a protected memory on the Control card SDCS-CON-2.

Control card SDCS-CON-2 has a self-diagnostic program. The program indicates the current state of the drive on a seven- segment display. These codes are given in the manual "OPERATING INSTRUCTION".

Each fault and alarm/status is coded as an individual error code to the LATEST FAULT (11106) and LATEST ALARM (11107). Fault words FAULT WORD1 (11101), FAULT WORD2 (11102), FAULT WORD3 (11103) and alarm words ALARM WORD1 (11104), ALARM WORD2 (11105), ALARM WORD3 (11106), contain status bits for all possible DCS500B faults and alarms.
see Operating Instruction
see Appendix A - Signal list 11101/11102/11103
see Appendix A - Signal list 11104/11105/11106

The latest fault can be read out from parameter LATEST FAULT (11107) and the latest alarm from LATEST ALARM (11108). The parameter is also the basic index for the fault logger which consists of 100 latest events, alarms and faults with occurrence times. The contents of the fault logger can be read out by means of the CMT/DCS500 Tool or panel.

CONSTANTS functi- DCS 500B software consists of certain constant values which can on block be used in application software or for testing purpose.

Logical constants

Logical constants	Output	Value
CONSTANT 0	(12501)	LOGIC 0 (false)
CONSTANT -1	(12502)	LOGIC 1 (true)

Numerical constants

FREE_SIGNALS function block

Numerical constants	Output	Value
CONSTANT 1	(12503)	1
CONSTANT 2	(12504)	2
CONSTANT 10	(12505)	10
CONSTANT 100	(12506)	100
CONSTANT 1000	(12507)	1000
CONSTANT 31416	(12508)	$31416 \quad\left(\approx \pi^{*} 100\right)$
EMF 100\%	(12509)	3786
TORQ 100\%	(12510)	4000
TORQ -100\%	(12511)	-4000
CUR,FLX,VLT 100\%	(12512)	4095
CUR,FLX,VLT -100\%	(12513)	-4095
SPEED 100\%	(12514)	20000
SPEED -100\%	(12515)	-20000

These signals can be set by the CMT/DCS500 or control panel. The value can be used to give different references. Before the drive will follow this reference, it has to be connected to the correct input. If BACKUPSTORE MODE is activated, these values will not be stored!

Set constants	Output	Range
SIG1(SPEED REF)	(12516)	$-30000 \ldots 30000$
SIG2(SPEED STEP)	(12517)	$-30000 \ldots 30000$
SIG3(TORQUE REF A)	(12518)	$-30000 \ldots 30000$
SIG4(TORQUE REF B)	(12519)	$-30000 \ldots 30000$
SIG5(TORQUE STEP)	(12520)	$-30000 \ldots 30000$
SIG6(LOAD SHARE)	(12521)	$-30000 \ldots 30000$
SIG7(FLUX REF)	(12522)	$-30000 \ldots 30000$
SIG8(EMF REF)	(12523)	$-30000 \ldots 30000$
SIG9(FORCE FWD)	(12524)	$-30000 \ldots 30000$
SIG10(FORCE REV)	(12525)	$-30000 \ldots 30000$
SIG11(CURRENT REF)	(12526)	$-30000 \ldots 30000$
SIG12(CURRENT STEP)	(12527)	$-30000 \ldots 30000$

Functional Software description

A

Actual speed based on EMF, 25
adaptive gain, 32
Additional Commutation Reserve, 45
Al1, 6
Al2 function block, 37
AITAC, 6, 24
AITAC CONV MODE, 24
ALARM WORD1, 92
ALARM WORD2, 92
ALARM WORD3, 92
Analog Input Error Codes, 8
Analog Input Function Block, 6
Analog Output Function Block, 9
Analog Outputs, 9
analogue tacho generator, 23, 24
ARM ALPHA, 45
ARM ALPHA LIM MAX, 45
ARM ALPHA LIM MIN, 45
ARM DIR, 47
Armature Current Scaling, 43
Autotuning, 13

B

backlash, 32, 39
BACKUP STORE MODE, 3
Brake Release, 76

C

Calculation of speed, 25
Changing of the direction, 27
Closing Control of the Contactors, 16
CMT/DCS500, 4, 21
Coast Stop, 19, 20
compensation, 28
Connections between Function
Blocks, 4
Const_Ref, 26
constant reference, 26
CONV MODE, 6
Current Difference Alarm, 43
Current Limitations, 37
Current Reference Limitation, 43
Current Reference Rise Time, 43
Current Response Test, 43

D

Data Logger, 87
DCF503-0050, 51
DCF504-0050, 51

Diagnostics, 92

Digital and Analog I/O, 5
Digital Input Function Blocks, 5
Digital Output Function Block, 5
Discontinuous Current Point, 44
Drive Logic, 16
Drive Logic Function Block, 16
DROOPING, 33

DXN, 45, 46
dynamic braking, 17

E

e, 31
Earth Fault, 66
EME STOP, 19
EME STOP MODE, 19, 27
Emergency Stop, 19 emergency stop function, 27
EMESTOP ACT, 19, 20
EMESTOP RAMP, 27
EMF, 23, 61
EMF reference handling, 62
EMSTOP RAMP, 18, 19, 20
external torque reference, 42

F

Fault Alarm Signals, 92
Fault Handling, 92
Fault Logge, 92
FAULT WORD1, 92
FAULT WORD2, 92 FAULT WORD3, 92
FEXC SEL, 50, 51
FEXC STATUS, 50
FIELD ACK VIA AI, 51
FIELD ACK VIA DI, 51
FIELD HEAT SEL, 60
Field heating, 60
FIELD MODE, 61
Field Reversal, 54
FIELD WEAK POINT, 62
Filtering of the actual speed, 25
Firing Angle Limitation, 45 follower drive, 37
Force field direction, 55
FPROM-memory circuit, 2
Free signals, 93
Free Wheeling Function, 53
FRS, 30, 32
Function Blocks, 4

G

Gear backlash compensation, 40
GEAR.START TORQ, 39

H

HOLD, 27
Holding Torque, 76
I
I MOTN A, 47
Identification of the Converter Software version, 3
Identification of the Field Exciter
Software version, 3
incremental encoder, 23, 24
integrator time constant, 32

K

KLIXON IN, 69
KPSMIN, 32
KPSWEAKFILT, 32

L
LATEST ALARM, 92
LATEST FAULT, 92
Limitation, 26
Load sharing, 37
LOCAL, 21
Local/Remote, 21
LOCAL/REMOTE, 27
Logical constants, 93

M

Main Reference Selection, 26
Manual Tuning, 12
Measured Motor Temperature, 67
Measurement selection, 67
Minimum Speed Indication, 76
Motor 1 Protection, 67
Motor 2 Protection, 67
motor temperature, 67

N

Network overvoltage, 65
Network reactance, 46
Network undervoltage, 65
Network voltage measurement, 65
Numerical constants, 93

0

Opening Control of the Contactor, 17
Opti-Torque, 56
Over -temperature, 66
Overcurrent, 65
overtemperature fault, 17

P

Parameter Sets, 2
Passing of the RAMP function, 28
PERIOD btw.POT1/2, 12
PI controller, 44
polarity of the analogue tacho, 24
POT1 VALUE, 12
POT2 VALUE, 12
proportional gain, 32
PS5311, 24
PT100 sensors, 67

R

Ramp function, 28
Ramp Generator, 27
REF SEL function block, 26
Reset the drive fault, 20
rise time of the current reference, 43

Run Control, 17
RUN-command to zero, 18
RUNNING, 17

S

Saving the program, 2
Scaling of the actual voltage, 25
SDCS-CON-2, 5, 9, 24
SDCS-FEX-1, 50
SDCS-FEX-2, 51
SDCS-IOB-2x, 5
SDCS-IOB-3, 9,24
SDCS-IOE-1, 5
Selection of the Field Exciter, 50
Settings, 11
Short Circuit Current, 46
SOFTPOT, 26
Software version, 3
SPEED ACT, 25
SPEED ACT FILT, 25
SPEED ACT FTR, 25
speed control, 30
Speed Control Function Block, 32
SPEED ERROR function block, 30

SPEED MEAS MODE, 24
Speed measurement mode, 24
speed reference, 23
Speed scaling, 23
Speed Step, 30
SQUAREWAVE, 12
stall protection, 34
START INHIBIT, 17
Stop Control, 18

T

tacho generator adaption board, 24
TACHO PULSES, 24
TACHOPULS NR, 24
TEST REF, 12
TEST REF SEL, 12
thermal model, 69
thermal preloading, 71
Thermal time constant, 72
TORQ REF HANDLING function
block, 42
Torque Limits, 38
torque reference chain, 37
Torque Reference Scaling, 37

Torque reference selection, 37
Torque Step, 43
trip main contactor and field contactor, 17
trip main contactor, field contactor and
fans, 17
trip the main contactor, 17
tripping, 17
Tuning of Current Regulator, 45

U

U CONV V, 65
U MOTN V, 47
U NET MIN1, 65
U NET MIN2, 65
U SUPPLY, 47, 65

W

WIN MODE, 31
WIN SIZE, 31
window control, 31
Window Control, 31
Window Size, 31

DCS 500 Thyristor Power converters

Parameter and Signal list
Software Version: 21.233
Diagram: S21V2_0

Appendix A

Contents
General 4
Parameters of DCS 500 5
Signals of DCS 500 7
Group 1: ANALOG INPUTS 8
Group 2: ANALOG OUTPUTS 12
Group 3: BRAKE CONTROL 14
Group 4: CURRENT CONTROL 15
Group 5: CONVERTER AND MOTOR 18
Group 6: DATA LOGGER 23
Group 8: DIGITAL OUTPUTS 25
Group 9: DRIVE LOGIC 27
Group 10: EMF CONTROL 30
Group 11: FAULTS, ALARMS 33
Group 12: MAINTENANCE 36
Group 13: MOTOR 1 FIELD 39
Group 14: MOTOR 1 PROTECT. 42
Group 15: MOTOR 2 FIELD 43
Group 16: MOTOR 2 PROTECT 45
Group 17: RAMP GENERATOR 46
Group 18: REFERENCE CHAIN 48
Group 19: REFERENCE SOURCES 49
Group 20: SPEED CONTROLLER 52
Group 21: SPEED MEASUREMENT 54
Group 22: SPEED MONITOR 55
Group 23: TORQUE and CURRENT LIMITS 57
Group 24: TORQUE REFERENCE CHAIN 60
Group 25: FB EXECUTION 61
Group 26: FUNCTION BLOCKS 1 62
Group 27: FUNCTION BLOCKS 2 62
Group 28: FUNCTION BLOCKS 3 62
Group 29: FUNCTION BLOCKS 4 62
Group 30: FUNCTION BLOCKS 5 62
Group 31: FUNCTION BLOCKS 6 62
Group 32: FUNCTION BLOCKS 7 62
Group 33: FUNCTION BLOCKS 8 62
Group 34: FUNCTION BLOCKS 9 62
Group 36: 12-PULSE OPERATING 63
Group 37: WINDER PARAMETER 66
Group 38: FUNCTION BLOCKS WINDER 66
Group 39: FUNCTION BLOCKS 10 66
Group 40: FIELDBUS 67
Group 101: ANALOG INPUTS 74
Group 103: BRAKE CONTROL 78
Group 104: CURRENT CONTROL 79
Group 105: CONVERTER, MOTOR 80
Group 106: DATA LOGGER 82
Group 107: DIGITAL INPUTS 83
Group 109: DRIVE LOGIC 86
Group 110: EMF CONTROL 88
Group 111: FAULTS, ALARMS 89
Group 112: MAINTENANCE 93
Group 113: MOTOR 1 FIELD 98
Group 114: MOTOR 1 PROTECT 99
Group 115: MOTOR 2 FIELD 100
Group 116: MOTOR 2 PROTECTION 101
Group 117: RAMP GENERATOR 102
Group 118: REFERENCE CHAIN 103
Group 119: REFERENCE SOURCES 104
Group 120: SPEED CONTROLLER 105
Group 121: SPEED MEASUREMENT 106
Group 122: SPEED MONITOR 107
Group 123: TORQUE and CURRENT LIMITS 108
Group 124: TORQUE REFERENCE CHAIN 109
Group 125: TASKS, CONSTANTS 110
Group 126: FUNCTION BLOCKS 1 113
Group 127: FUNCTION BLOCKS 2 113
Group 128: FUNCTION BLOCKS 3 113
Group 129: FUNCTION BLOCKS 4 113
Group 130: FUNCTION BLOCKS 5 113
Group 135: DDCTool 114
Group 136: 12-PULSE-OPERATING 115
Group 138: FUNCTION WINDER BLOCKS 118
Group 139: FUNCTION BLOCKS 10 118

General

The entire software is made up of connected function blocks. Each of these individual function blocks constitutes a subfunction of the overall functionality.

The function blocks can be subdivided into two categories:

- Function blocks which are permanently active, are almost always in use; these are described on the following pages.
- Function blocks which, although they are available within the software as standard features, have to be expressly activated when they are needed for special requirements. These include, for example: AND gates with 2 or 4 inputs, OR gates with 2 or 4 inputs, adders with 2 or 4 inputs, multipliers/dividers, etc. or closed-control-loop functions, such as integrator, PI controller, D-T1 element, etc.

All function blocks are characterized by input and output lines, equipped with numbers. These inputs/outputs can likewise be subdivided into two categories:

Inputs for designating connections

When you want to alter connections between function blocks, proceed as follows:

- first select the input
- and then connect to output.

All those connections possessing one dot each at their beginning and end can be altered.

Parameters for setting values (such as ramp-up time / ramp-down time, controller gain, reference values and others)

Default setting

For input / parameter selection, the following applies:

- Ignore the two right-hand digits; the remaining digits are the group and to be selected
- The two right-hand digits are the element and to be selected

The selection can be done with the control panel CDP312, using the (double-up-down) for the group and the (single-up-down) for the element or a PC-based tool program CMT/DCS500B.

Parameters of DCS 500

DCS／DCF 500B parameters consist of two types（parameters and inputs）and divided to several different parameter groups．Parameters／inputs of a certain group belong to the same functional part of the control program．Maximum number in one group is 99.
（within this manual the word parameter will be used for both types，parameter and input）
Every parameter is described using the same structure，which is shown by their basics below：

name Parameter of \｛standard function block\} function block Explanation	（S11／16）．				
index	data type	scal．factor	maximum	minimum	default

Name Para	is given in the same format as it is seen on the panel．
	mentiones the name of the function block using this parameter；at the end of this line the page of the software diagrams available at the end of the System
	Description is given；at some parameters the software version is named this parameter is available for the first time
Expl Index	description in verbal form
	of a parameter contains a group number and an element number．Last two digits are the element number and other numbers before them form the group number：
	101 ＝＞parameter group $=1$ ，element $=01$
	1404 －＞parameter group $=14$ ，element $=04$.
Data type	is given with a short code：
	FB＿I：Input of a function block
	FB＿P：Parameter of a function block
	P：Parameter
	I2 16－bit signed integer
	E2 Selection parameter
	PB packed Boolean value
	B Boolean value
	U2 16－bit unsigned integer
	C4 connection to function block output（signal）or to some parameter
Scaling factor	In this table scaling factors are presented using symbols or constants．

scaling factor（＝100\％）	calculation：internal to physical value	scaling factor used at（excerpt）：
0.001	int．val＊ 0.001 ［unit］	－－－－
0.01	int．val＊ 0.01 ［unit］	5．03， 10.18 and others
0.1	int．val＊ 0.1 ［unit］	4．14， 17.08 and others
1	int．val＊ 1 ［unit］	1．08， 2.02 and others
MCURR（气 4095）	int．val＊ 5.02 ［A］／ 4095	4．02；14．06；motor current in A
FCURR（＾4095）	int．val＊ $5.04[\mathrm{~A}]$／ 4095	13．01，13．05；field current in A
VOLT（ $\hat{\underline{\wedge}} 4095)$	int．val＊ 5.07 ［V］／ 4095	13．11，15．08；voltage in V
SPEED（へ 20000）	int．val＊ 21.03 ［RPM］／ 20.000	1．02，17．01；motor speed in RPM
CCURR（ 4095）	int．val＊ 105.09 ［A］／ 4095	4．09，3604；converter current in A
TORQ（ 4000）	int．val＊ 100.0 ［\％］／ 4000	4．01，13．19；motor torque in \％
CURR（气 4095）	int．val＊ 100 ［\％］／ 4095	10．13；current in \％
FLUX（ 4095）	int．val＊ 100 ［\％］／ 4095	10．02，10．09；flux in \％
EMF（＾3786）	int．val＊ 100 ［\％］／ 3786	10．03，10．11；motor emf in \％
BI （logic input）	not equal to 0 0	$\begin{aligned} & =\text { TRUE } \\ & =\text { FALSE } \end{aligned}$
BO （logic output）	$\begin{gathered} -1 \\ 0 \end{gathered}$	$\begin{aligned} & =\text { TRUE } \\ & =\text { FALSE } \end{aligned}$

Maximum	HL = high level; is given as internal values
Minimum	LL = low level; is given as internal values Default is given as internal values
Unit	either the maximum or the minimum or the default value has to be multiplied by the scaling factor; then the unit has to be added to that number to get the physical value
Example:	The parameter which is defining nominal voltage of the motor has following description:

U_MOTN_V						
Parameter of SETTINGS-function block				(S2/16 I mod in S21.232)		
The nominal voltage of the motor in volts. (higher HL in S21.232)						
501	FB_P: I2	SC: 1	HL: 1800	LL: 0	D: 0	U: V

Name	U_MOTN_V will be found at the SETTINGS function block, which is shown on the software diagrams on page 2 out of 16; this parameter has been modified at software version S21.232 and has still this new function description in verbal form
Expl	parameter group $=5$, element $=01$
Index	FB_P: Parameter of a function block
Data type	I2 \quad 16-bit signed integer
Scaling factor	equal 1
Maximum	1800
Minimum	0
Default	0 (at C1, C2, C3: will be set by the converter automatically)
Unit	is Volt; example: HL $(=1800) *$ SC $(=1)=1800 \mathrm{~V}$

Signals of DCS 500

DCS/DCF500B signals are divided to several different signal groups. Signals of a certain group belong to the same functional part of the control program. Maximum number of signals in one group is 99 .
Every signal is described using the same structure, which is shown by their basics below:

| Name
 Signal of \{standard function block\} function block
 Explanation | (S11/16). | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Name	is given in the same format as it is seen on the panel. sig mentiones the name of the function block using this signal; at the end of this line the page of the software diagrams available at the end of the System Description is given; at some signals the software version is named this signal is available for the first time
description in verbal form	
of a signal contains a group number and an element number. Last two digits	
are the element number and other numbers before them form the group	
number:	

U_ARM_ACT						
Signal of SETTINGS-function block.						(S2/16)
Actual voltage of the motor. Scaling based on signal U_NET_DC_NOM						
10505	FB_O: I2	SC: VOLT	HL: -	LL: -	D: -	U: V

Name	U_ARM_ACT will be found at the SETTINGS function block, which is shown on the Sig
software diagrams on page 2 out of 16 description in verbal form	
Expl	signal group $=105$, element $=05$
Index	FB_O: Output of a function block
Data type	I2 $\quad 16$-bit signed integer
Scaling factor	as for VOLT
Maximum	not available
Minimum	not available
Default	not available
Unit	is Volt;

Group 1: ANALOG INPUTS

Al4_CONV_MODE											
Parameter of Al4-function block Selector for type of input signal:											
$0=$ DISABLE			channel not in use								
$1=+/-10 \mathrm{~V}$ or $+/-20 \mathrm{~mA}$			-10...+10V	IOB1, CON-2							
			IOB3: S1:11-12, 13-14 not connected. IOB1, CON-2: 500 ohms between X4:1-2								
						-20...+20mA					
			IOB1, CON-2: 500 ohms between X4:1-2 IOB3: S1:9-10 connected								
$2=4 . .20 \mathrm{~mA}$				S1:11-1	, 13-14 not	nected.					
			$4 \ldots 20 \mathrm{~mA}$	IOB1, CON-2: 500 ohms between X4:1-2							
$2=4 \ldots 20 \mathrm{~mA}$				IOB3: S1:9-10 connected							
				S1:11-1	, 13-14 not	nected					
3 = EARTH FAULT MON.				IOB3: S1:9-10 not connected S1:11-12, 13-14 connected connection terminals: X3:11, 12							
113	FB_P: E2	SC: -	HL: 3	LL: 0	D: 0	U: -					
AI4_HIGH_VALUE											
Parameter of Al4-function block (S11/16).											
Value that corresponds to upper range input signal ($+10 \mathrm{~V} / 20 \mathrm{~mA}$)											
114	FB_P: 12	SC: 1	HL: 32767	LL: -32768	D: 2000	U: -					
Al4_LOW_VALUE											
Parameter of Al4-function block (S11/16).											
Value that corresponds to lower range input signal ($-10 \mathrm{~V} / 0 \mathrm{~mA} / 4 \mathrm{~mA}$)											
115	FB_P: 12	SC: 1	HL: 32767	LL: -32768	D: -2000	U: -					
AI5_CONV_MODE											
Parameter of Al5-function block (S11/16).											
Selector for type of input signal:											
0 = DISABLE			channel not in use								
$1=+/-10 \mathrm{~V}$ or $+/-20 \mathrm{~mA}$			-10...+10V	SDCS-IOE-1 SDCS-IOE-1: S1: 3-4 connected							
			-20...+20mA								
$2=4 \ldots 20 \mathrm{~mA}$			4 ... 20 mA	SDCS-IOE-1: S1: 3-4 connected							
116	FB_P: E2	SC: -	HL: 2	LL: 0	D: 0	U: -					
Al5_HIGH_VALUE											
Parameter of Al5-function block						(S11/16).					
Value that corresponds to upper range input signal ($+10 \mathrm{~V} / 20 \mathrm{~mA}$)											
117	FB_P: 12	SC: 1	HL: 32767	LL: -32768	D: 2000	U: -					
Al5_LOW_VALUE											
Parameter of A15-function block						(S11/16).					
Value that corresponds to lower range input signal ($-10 \mathrm{~V} / 0 \mathrm{~mA} / 4 \mathrm{~mA}$)											
118	FB_P: 12	SC: 1	HL: 32767	LL: -32768	D: -2000	U: -					
AI6_CONV_MODE											
Parameter of Al6-function block (S11/16).											
Selector for type of input signal:											
$0=$ DISABLE			channel not in use								
			-10...+10V	SDCS-IOE-1							
			-20...+20mA	SDCS-IOE-1:	S2: 3-4 con						
$2=4 . .20 \mathrm{~mA}$			4... 20 mA	SDCS-IOE-1: S2: 3-4 connected							
119	FB_P: E2	SC: -	HL: 2	LL: 0	D: 0	U: -					
AI6_HIGH_VALUE											
Parameter of Al6-function blockValue that(S11/16).											
120	FB_P: 12	SC: 1	HL: 32767	LL: -32768	D: 2000	U: -					

Al6_LOW_VALUE						
Parameter of Al6-function block						(S11/16).
Value that corresponds to lower range input signal (-10V/0mA/4mA)						
121	FB_P: 12	SC: 1	HL: 32767	LL: -32768	D: -2000	U: -

Group 2: ANALOG OUTPUTS

AO1.[IN]						
Input IN of AO1 function block Connected to signal which is needed in AO1.					(S5/16).	
201	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 12102	U: -
Parameter of AO1 function block Output voltage which corresponds to nominal value of selected signal.						
202	FB_P: 12	SC: 1	HL: 10000	LL: 0	D: 10000	U: mV
AO1_OFFSET_V Parameter of AO1 function block Offset voltage which is added to the output voltage.						
203	FB_P: 12	SC: 1	HL: 10000	LL: -10000	D: 0	U: mV
AO1_NOMINAL_VAL Parameter of AO1 function block The nominal value of the signal which is connected to the IN -input.						
204	FB_P: 12	SC: 1	HL: 32767	LL: 0	D: 20000	U:
AO2.[IN] Input IN of AO2 function block Connected to signal which is needed in AO2.						
205	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 10505	U: -
AO2_NOMINAL_V Parameter of AO2 function block Output voltage which corresponds to nominal value of selected signal.						
206					D: 5000	U: mV
AO2_OFFSET_V Parameter of AO2 function block Offset voltage which is added to the output voltage.						
207	FB_P: 12	SC: 1	HL: 10000	LL: -10000	D: 0	U: mV
AO2_NOMINAL_VAL Parameter of AO2 function block The nominal value of the signal which is connected to the IN -input.						
208	FB_P: 12	SC: 1	HL: 32767	LL: 0	D: 4095	U: -
DATASET2.[IN1] Input of DATASET2 function block DATASET 2 is used for data transmission from the drive to the fieldbus master. When a fieldbus communication module is connected the DCS 500 can transmit a 3 word telegram called DATASET2.[IN1]...[IN3] to a fieldbus master. DATASET2.[IN1] selects the address of first word of this telegram.						
209	FB_l: C4	SC: -	HL: 19999	LL: 0	D: 0	U: -
DATASET2.[IN2] Input of DATASET2 function block DATASET2.[IN2] selects the address of second word of this telegram.						
210	FB_l: C4	SC: -	HL: 19999	LL: 0	D: 0	U: -
DATASET2.[IN3] Input of DATASET2 function block DATASET2.[IN3] selects the address of third word of this telegram.						
211	FB_l: C4	SC: -	HL: 19999	LL: 0	D: 0	U: -

DATASET4.[IN1]						
Input of DATASET4 function block ($\mathrm{S} 12 / 16$)						
DATASET 4 is used for data transmission from the drive to the fieldbus master.						
When a fieldbus communication module is connected the DCS 500 can transmit a 3 word telegram called DATASET4.[IN1]...[IN3] to a fieldbus master.						
DATASET4.[IN1] selects the address of first word of this telegram.						
212	FB_l: C4	SC: -	HL: 19999	LL: 0	D: 0	U:
DATASET4.[IN2]						
Input of DATASET4 function block DATASET4.[IN2] selects the address of second word of this telegram.						
213	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 0	U: -
DATASET4.[IN3]						
Input of DATASET4 function block						2/16)
DATASET4.[IN3] selects the address of third word of this telegram.						
214	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 0	U: -

Group 3: BRAKE CONTROL

[HOLD_REF]						
Input of BRAKE CONTROL-function block						(S10/16)
Holding torque used when the drive is running during START_DELAY or STOP_DELAY.						
301	FB_I: C4	SC: TORQ	HL: 19999	LL: 0	D: 0	U:
[BR_RELEAS						
Input of BRAKE CONTROL-function block. The release command for the mechanical brake						
302	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 10715	U:
[MIN_SP_IND]						
Input of BRAKE CONTROL-function block. Indicating that speed actual is below a minimum speed limit.						
303	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 12201	U: -
[ACT_BRAKE]						
Input of BRAKE CONTROL-function block. (S10/16)						
Acknowledge signal from the brake. This input points to the signal, it is connected to. The logic level on this interconnection is defined as:						
<> = (brake is open).						
If the acknowledge is not used, set [ACT_BRAKE] $=0$, otherwise connect it to Digital Input or some other function block. When brake is opened with LIFT_BRAKE (10304) output,						
304	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
START_DELAY						
Parameter of BRAKE CONTROL-function block. (S10/16)						
When start command is given, speed reference is released after START_DELAY has elapsed.						
305	FB_P: 12	SC: 1	HL: 32767	LL: 0	D: 0	$\mathrm{U}: \mathrm{ms}$
STOP_DELAY						
Parameter of BRAKE CONTROL-function block. (S10/16)						
When stop command is given, current control is blocked when STOP_DELAY has elapsed.						
306	FB_P: 12	SC: 1	HL: 32767	LL: 0	D: 0	$\mathrm{U}: \mathrm{ms}$
HOLD_TORQ						
Parameter of BRAKE CONTROL-function block. (S10/16) Torque reference used when the drive is running during START_DELAY or STOP_DELAY if [HOLD_REF] is not connected.						
307	FB_P: I2	SC: TORQ	HL: 16000	LL: -16000	D: 0	U: \%
EMESTOP_BRAKE						
Parameter of BRAKE CONTROL-function block. (S10/16)						
Selects the function of mechanical brake in emergency stop situation:$\begin{array}{ll} 0=\text { DISABLE } & \text { (brake is activated when speed is zero) } \\ 1=\text { ENABLE } & \text { (brake is activated immediately). } \end{array}$						
308	FB_P: E2	SC: -	HL: 1	LL: 0	D: 0	U: -

Group 4: CURRENT CONTROL

[TORQ_REF]						
Input of CURRENT CONTROL-function block.						(S7/16)
401	FB_I: C4	SC: TORQ	HL: 19999	LL: 0	D: 12402	U: -
Input of CURRENT CONTROL-function block. Either current or torque reference is used depending on value of REF_TYPE_SELparameter.						
402	FB_I: C4	SC:MCURR	HL: 19999	LL: 0	D: 12526	U:
[CURR_STEP] Input of CURRENT CONTROL-function block. Additional current/torque reference added to the main reference.						
403	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 12527	U
[BLOCK] Input of CURRENT CONTROL-function block. (S7/16) A block-command for the current controller. The controller will try to decrease the armature current to zero as fast as possible.						
404	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U:
REF_TYPE_SEL Parameter of CURRENT CONTROL-function block. Selector for the main reference: $\begin{aligned} & 0=\text { TORQ_REF } \\ & 1=\text { CURR_REF } \end{aligned}$						
405	FB_P: E2	SC: -	HL: 1	LL: 0	D: 0	U:
ARM_CURR_REF_SLOPE Parameter of CURRENT CONTROL-function block. (S7/16) The maximum slope of the current reference (di/dt). Given as largest amount for reference change during 3.3 ms (2.7 ms in 60 Hz supply).						
406	FB_P: I2	SC:MCURR	HL: 4100	LL: 0	D: 1366	U: A
ARM_CURR_PI_KP Parameter of CURRENT CONTROL-function block. (S7/16) Proportional gain for PI-type current controller: output = ARM_CURR_PI_KP * error / 256.						
407	FB_P: I2	SC: -	HL: 2977	LL: 3	D: 300	U: -
ARM_CURR_PI_KI Parameter of CURRENT CONTROL-function block. (S7/16) Integration gain for PI-type current controller: $\begin{aligned} \text { Time constant }= & 16384 * 3,33 / \text { ARM_CURR_PI_KI (} 50 \mathrm{~Hz} \text { supply) } \\ & 16384 * 2,77 / \text { ARM_CURR_PI_KI (} 60 \mathrm{~Hz} \text { supply). } . \end{aligned}$						
408	FB_P: I2	SC: -	HL: 31968	LL: 0	D: 3200	U: -
ARM_CONT_CURR_LIM Parameter of CURRENT CONTROL-function block. Current level where current changes from discontinous to continous. Value is set by the auto-tuning or manual tuning function of the current controller.						
409	FB_P: I2	SC: CCURR	HL: 4100	LL: 0	D: 2050	U: A

ARM_L						
Parameter of CURRENT CONTROL-function block. (S7/16)						
Relative inductance of armature circuit. Value is set by the auto-tuning or manual tuning function of the current controller.						
410	FB_P: I2	SC: -	HL: 32767	LL: 0	D: 0	U: -
ARM_R						
Parameter of CURRENT CONTROL-function block. (S7/16)						
Relative resistance of armature circuit. Value is set by the auto-tuning or manual tuning function of the current controller.						
411	FB_P: I2	SC: -	HL: 32767	LL: 0	D: 0	U: -
ARM_ALPHA_LIM_MAX						
Parameter of CURRENT CONTROL-function block. Max. firing angle in degrees.						
412	FB_P: I2	SC: 1	HL: 165	LL: 0	D: 150	U: -
ARM_ALPHA_LIM_MIN						
Parameter of CURRENT CONTROL-function block. Min. firing angle in degrees.						
413	FB_P: 12	SC: 1	HL: 165	LL: 0	D: 15	U: -
DXN						
Parameter of CURRENT CONTROL-function block. Additional commutation reserve proportional to the armature current.						
414	FB_P: I2	SC: 0.1	HL: 150	LL: 0	D: 0	U: \%
[ARM_CURR_LIM_P]						
Input of CURRENT CONTROL-function block. Positive limitation of current control block.						
415	FB_I: C4	SC:MCURR	HL: 19999	LL: 0	D: 12307	U: -
[ARM_CURR_LIM_N]						
Input of CURRENT CONTROL-function block. Negative limitation of current control block.						
416	FB_I: C4	SC:MCURR	HL: 19999	LL: 0	D: 12308	U: -
ARM_CURR_CLAMP						
Parameter of CURRENT CONTROL-function block. (S7/16) 						
417	FB_P: I2	SC: CCURR	HL: 40	LL: 0	D: 40	U: A
CURRENT_RISE_MAX						
Parameter of the CURRENT CONTROL-function block. (S7/16 \| S21.232) Determines the amount of current the actual current of one after another current bubble may differ. This setting is used to calculate the current rise monitoring function.						
418	FB_P: I2	SC:MCURR	HL: 32767	LL: 0	D: 32767	U: A
ZERO_CUR_DETECT						
Parameter of the CURRENT CONTROL-function block. (S7/16 \| S21.232)						
Selec CZD-	to enable This board DISABLED ENABLED	he use of the z uses the thyristor (internal zero (option board	ro current d blocking v current dete SDCS-CZD	ction b age. on is used	the option $\mathrm{N}-\mathrm{x}$ in use	ard SDCS
419	FB_P: E2	SC: -	HL: 1	LL: 0	D: 0	U: -

CUR_RIPPLE_MONIT							
Parameter of the CURRENT CONTROL-function block.					(S7/16 \\| S21.232)		
Selector for the current ripple monitoring function:							
$1=$ METHOD 1 plus ERROR message							
$2=$ METHOD 2 plus ALARM message (recommended for DCF 500B)							
$3=$ METHOD 2 plus ERROR message (recommended for DCF 500B)							
420	FB_P: E2	SC: -	HL: 3	LL: 0	D: 0	U: -	
CUR_RIPPLE_LIM							
Parameter of the CURRENT CONTROL-function block. (S7/16 \| S21.232)							
Threshold for the current ripple monitor function. Dependent on the method selected current bubbles compared to each other have to be less different to avoid an alarm or error message. If method 2 is selected, set this parameter to a value higher than ARM CURR REF SLOPE otherwise an indication will be displayed all time.							
421	FB_P: I2	SC: 0.1	HL: 1500	LL: 0	D: 7	U: \%	

Group 5: CONVERTER AND MOTOR

EMF_FILT_TC						
Parameter of SETTINGS-function block. Filter time constant for calculated EMF before EMF-controller.						
513	FB_P: 12	SC: 1	HL: 10000	LL: 0	D: 10	U: ms
EARTH.CURR_SEL						
Parameter of CONVERTER_PROTECTION-function block. Selection for earth fault monitoring:						
$0=$ DISABLE						
1 = ENABLE.						
514	FB_P: E2	SC: -	HL: 1	LL: 0	D: 0	U: -
EARTH.FLT_LEV						
Parameter of CONVERTER_PROTECTION-function block. Earth fault current tripping level in amperes.						
515	FB_P: 12	SC: 1	HL: 20	LL: 0	D: 4	U: A
EARTH.FLT_DLY						
Parameter of CONVERTER_PROTECTION-function block. The time after the earth fault is activated.						
516	FB_P: 12	SC: 1	HL: 10000	LL: 0	D: 10	U: ms
SET_I_CONV_A						
Parameter of SETTINGS-function block. (S2/16) The nominal current of the converter.						
Note: This parameter overwrites the nominal current of the converter defined by type code resistors!						
$0=$ type code resistors are in use$>0=$ value of this parameter is used.						
517	FB_P: I2	SC: 1	HL: 10000	LL: 0	D: 0	U: A
SET_U_CONV_V						
Parameter of SETTINGS-function block. (S2/16)						
The nominal voltage of the converter.						
Note: This parameter overwrites the nominal voltage of the converter defined by type code resistors!						
$0=$ type code resistors are in use $>0=$ value of this parameter is used.						
518	FB_P: 12	SC: 1	HL: 2000	LL: 0	D: 0	U: V
SET_MAX_BR_TEMP						
Parameter of SETTINGS-function block. (S2/16)						
The tripping level for the converter heat sink temperature monitoring.						
Note: This parameter overwrites the max bridge temperature of the converter defined by type code resistors!						
$0=$ type code resistors are in use$>0=$ value of this parameter is used.						
519	FB_P: 12	SC: 1	HL: 150	LL: 0	D: 0	U: C

SET_CONV_TYPE						
Parameter of SETTINGS-function block. The type of the converter.						
Note: This parameter overwrites the type of the converter defined by type code resistors !						
C1 construction type con						
construction type converte)						
3			(C3 construction type converter)			
4:			(C4 construction	ype conv		
520	FB_P: 12	SC: 1	HL: 4	LL: 0	D: 0	U: -
SET_QUADR_TYPE						
Parameter of SETTINGS-function block. The type of the converter.						
Note: This parameter overwrites the type of the converter defined by type code resistors! 0 : (type code resistors are in use)						
1: (ONE_QUADRANT type converter DCx 50						
4:			(FOUR_QUADR	NT type	r DCX	
521	FB_P: 12	SC: 1	HL: 4	LL: 0	D: 0	U: -
LANGUAGE						
Parameter of SETTINGS-function block. (S2/16)						
Selects the language used for alarm/warning texts in the panel / CMT.$0 \text { = ENGLISH }$						
1 = GERMAN						
$2=$ ITALIAN						
3 = SPANISH						
$4=$ FRENCH						
522	FB_P: E2	SC: -	HL: 4	LL: 0	D: 0	U: -
CURR_ACT_FILT_TC						
Parameter of SETTINGS-function block. (S2/16)						
Filter time constant for calculated CONV_CURR_ACT (10501) and ARM_CURR_ACT (10502).						
523	FB_P: 12	SC: 1	HL: 100	LL: 0	D: 0	U: ms
PLL_CONTROL						
Parameter of SETTINGS-function block. (S2/16 \| S21.230)						
The network is reproduced by a software PLL system. If the frequency or the phase shift of the network changes in comparison to the PLL, the PLL system has to be corrected. The						
524	FB_P: 12	SC: 1	HL: 6	LL: 1	D: 4	U: -
UNI_FILT_TC						
Parameter of SETTINGS-function block (S2/16 I S21.232) Filter time constant to smooth the feedforward control of the firing angle based on the line voltage signal. Line voltage variations will be compensated with a time delay.						
525	FB_P: 12	SC: 1.0	HL: 10000	LL: 0	D: 10	U: ms
OFFSET_UDC						
Parameter of SETTINGS-function block (S2/16 \| S21.232) The calculated EMF signal used for speed control at the SPEED_MEASUREMENT function block can be offset compensated with this parameter.						
526	FB P: 12	SC: 1.0	HL: 81	LL: -80	D: 0	U: -

CONV_TEMP_DELAY						
Parameter of CONVERTER_PROTECTION function block (S2/16 \| S21.232)						
This parameter delays the converter power part overtemperature function, if the option board PW 1002 is used. This board can be used together with DCP type converters or together with DCR kits. In default condition the delay is switched off. If the value is >0 F03 and A105 are enabled and F04 is disabled.						
527	FB_P: I2	SC: 0.01	HL: 10000	LL: 0	D: 0	U: s
PLL_DEV_LIM						
Parameter of SETTINGS-function block (S2/16 \| S21.232)						
At weak networks or high overload of the converter the duration of two successive line periods may differ. In this case the error message "not in synchronism" may be generated. This parameter specifies the threshold for F31.						
528	FB_P: I2	SC: 1.0	HL: 2048	LL: 612	D: 1024	U: -

Group 6: DATA LOGGER

DLOG.[IN1]						
Input of DATA_LOGGER-function block. Selects the signal which is measured in channel 1.						
601	FB I: C4	SC: -	HL: 19999	LL: 0	D: 12102	U: -
DLOG.[IN2]						
Input of DATA_LOGGER-function block. Selects the signal which is measured in channel 2.						
602	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 10501	U: -
DLOG.[IN3]						
Input of DATA_LOGGER-function block. Selects the signal which is measured in channel 3.						
603	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 10505	U: -
DLOG.[IN4]						
Input of DATA_LOGGER-function block. Selects the signal which is measured in channel 4.						
604	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 10504	U: -
DLOG.[IN5]						
Selects the signal which is measured in channel 5.						
605	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 11302	U: -
DLOG.[IN6]						
Selects the signal which is measured in channel 6.						
606	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 10401	U: -
DLOG.TRIGG_COND						
Param	ter of DATA	LOGG	ction block.			4/16)
Selects the triggering condition for the data logger:						
0 = EXTERNAL						
1 = FAULT or EXT						
2 = DIFFERENCE						
$3=\mathrm{MAX}$$4=\mathrm{MIN}$						
607	FB_P: E2	SC: -	HL: 4	LL: 0	D: 1	U: -
DLOG.TRIGG_VALUE						
Parameter of DATA_LOGGER-function block. (S14/16)						
Reference value that will be used if the trigger condition DLOG.TRIGG_CONT is set toDIFFERENCE, MAX or MIN						
608	FB_P: 12	SC: -	HL: 32767	LL: -32768	D: 20000	U: -
DLOG.TRIGG_DELAY						
Parameter of DATA_LOGGER-function block. (S14/16)						
Number of samples collected after triggering instant. Length of data logger is 1000 samples in each channel.						
609	FB_P: 12	SC: -	HL: 1000	LL: 0	D: 200	U: -
DLOG.SAMPL INT						
Parameter of DATA_LOGGER-function block. (S14/16) Sampling interval defining how often a measurement is made in each channel.						
610	FB_P: 12	SC: 1	HL: 1000	LL: 1	D: 3	$\mathrm{U}: \mathrm{ms}$

Group 8: DIGITAL OUTPUTS

D01.[IN]						
Input of DO1-function block. Normal input.					(S3/16)	
801	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 10908	U: -
DO1.[INV_IN] Input of DO1-function block. Inverted input.					(S3/16)	
			HL: 19999	LL: 0	D: 0	U: -
DO2.[IN] Input of DO2-function block. Normal input.					(S3/16)	
			HL: 19999	LL: 0	D: 10909	U: -
Input of DO2-function block. Inverted input.					(S3/16)	
804	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
DO3. Input Norm	DO3-funct input.	on block.			(S3/16)	
805	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 10910	U: -
DO3. Input Inver	_IN] DO3-funct input.	on block.			(S3/16)	
806	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
DO4.[IN] Input of DO4-function block. Normal input.					(S3/16)	
807	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 10902	U: -
DO4.[INV_IN] Input of DO4-function block. Inverted input.					(S3/16)	
808	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
DO5.[IN] Input of DO5-function block. Normal input.					(S3/16)	
809	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 10903	U: -
DO5.[INV_IN] Input of DO5-function block. Inverted input.					(S3/16)	
810	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
DO6.[IN] Input of DO6-function block. Normal input.					(S3/16)	
811	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
DO6.[INV_IN] Input of DO6-function block. Inverted input.					(S3/16)	
812	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -

D07.[IN] Input of DO7-function block. Normal input.					(S3/16)	
813	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
D07.[INV_IN] Input of DO7-function block. Inverted input.					(S3/16)	
814	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
DO8.[IN] Input of DO8-function block. Normal input. \qquad					(S3/16)	
			HL: 19999	LL: 0	D: 10910	U: -
Input of DO8-function block. Inverted input.					(S3/16)	
816	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U:

Group 9: DRIVE LOGIC

[ON/OFF] Input of DRIVE LOGIC-function block. Control of the main contactor.					S3/16)	
901	FB_I: C4	SC: BI	19999	LL:	D: 10713	U: -
[RUN1] Input of DRIVE LOGIC-function block. (S3/16) One of three RUN-commands. All run commands release controllers of the drive.						
902	FB_I: C4	SC: BI	HL: 19999	LL:	D: 10715	U: -
[RUN2] Input of DRIVE LOGIC-function block. (S3/16) One of three RUN-commands. All run commands release controllers of the drive.						
903	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 11902	
[RUN3] Input of DRIVE LOGIC-function block. (S3/16) One of three RUN-commands. All run commands release controllers of the drive.						
904	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U:
[COAST_STOP] Input of DRIVE LOGIC-function block. Coast stop-command. This command will stop the drive so that the motor is left running and friction together with the load will decelerate the speed to zero.						
905	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U:
[EME_STOP] Input of DRIVE LOGIC-function block. (S3/16) Emergency stop-command. This command will stop the drive in a way which is defined with the parameter EME_STOP_MODE (917).						
906	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 10709	U:
[RESET] Input of DRIVE LOGIC-function block. (S3/16) Reset-command. This command will reset all fault memories if corresponding fault indication is not active any more.						
907	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 10711	U:
[START_INHIBIT] Input of DRIVE LOGIC-function block. (S3/16) Start inhibit-command. This command will disable ON- and RUN-commands to the drive. If the drive is running when this command is activated, the current controler tries to decrease the current to zero as fast as possible. If a 12 pulse parallel configuration is in use, please check signal LOGIK_F.INHIBIT (13616).						
908	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U:
[DISABLE_LOCAL] Input of DRIVE LOGIC-function block. (S3/16) Disable local-command. This command will disable local control of the drive from either a panel or CMT.						
909	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
[ACK_CONV_FAN] Input of DRIVE LOGIC-function block. (S3/16) An acknowledge signal from converter fan contactor. The drive will not start if there is no acknowledge from the converter fan contactor after the FAN_ON (10908)-command.						
910	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 10701	U: -

Group 10: EMF CONTROL

EMF_KI						
Parameter of EMF CONTROL-function block. Integral action time of the EMF controller. Scaling:$\text { TC = } 147200 / \text { EMF_KI; }$						
1008	FB_P: 12	SC:	HL: 20000	LL: 0	D: 4905	U: ms
EMF_REG_LIM_P						
Parameter of EMF CONTROL-function block. ($\mathrm{S} 8 / 16$) Positive limit for EMF controller output.						
1009	FB_P: 12	SC: FLUX	HL: 4095	LL: 0	D: 410	U: \%
EMF_REG_LIM_N						
Parameter of EMF CONTROL-function block. (S8/16)Negative limit for EMF controller output.						
1010	FB_P: 12	SC: FLUX	HL: 0	LL: -4095	D: -4095	U: \%
EMF_REL_LEV						
Parameter of EMF CONTROL-function block. EMF controller blocking level. When measured EMF is below this level, the EMF-controller is blocked.						
1011	FB_P: 12	SC: EMF	HL: 1000	LL: 0	D: 50	U: \%
FIELD_WEAK_POINT						
Parameter of EMF CONTROL-function block. Speed of the motor where flux reference reduction is started.						
1012	FB_P: 12	SC: SPEED	HL: 23000	LL: 4000	D: 20000	U: rpm
FIELD_CONST_1						
Parameter of EMF CONTROL-function block. Field current reference which produces 40% flux in motor (default: 29\% of nominal field current).						
1013	FB_P: 12	SC: CURR	HL: 4095	LL: 0	D: 1187	U: \%
FIELD_CONST_2						
Parameter of EMF CONTROL-function block. Field current reference which produces 70% flux in motor (default: 53\% of nominal field current).						
1014	FB_P: I2	SC: CURR	HL: 4095	LL: 0	D: 2190	U: \%
FIELD_CONST_3						
Parameter of EMF CONTROL-function block. Field current reference which produces 90% flux in motor (default: 79% of nominal field current).						
1015	FB_P: 12	SC: CURR	HL: 4095	LL: 0	D: 3255	U: \%
GENER.EMF_REF						
Parameter of EMF_CONTROL-function block (S8/16 \| S21.232)						
This parameter has a similar function than LOCAL_EMF_REF. It sets the value of the local EMF reference, if the drive is in regenerative mode. This function becomes active, if the value is lower than the one of LOCAL_EMF_REF. In case this value is lower than the one of LOCAL_EMF_REF, but GENER.WEAK_POINT is still higher than FIELD_WEAK_POINT the converter will block the other bridge until the motor voltage has dropped below the level set by GENER.WEAK_POINT. The drive is coasting and the speed normally will go down.						
1016	FB_P: 12	SC: 1.0	HL: 160	LL: 0	D: 160	U: \%

GENER.WEAK_POINT

Parameter of EMF_CONTROL-function block
(S8/16 | S21.232)
This parameter has a similar function than FIELD_WEAK_POINT. It specifies the speed of the motor where flux reference reduction is started, if the drive is in regenerative mode.
This function becomes active, if the value is lower than the one of FIELD_WEAK_POINT.

1017	FB_P: I2	SC: SPEED	HL: 23100	LL: 3400	D: 23100	U: rpm

FIELD_WEAK_DELAY

Parameter of EMF_CONTROL-function block
(S8/16 I S21.233)
This parameter defines a time delay, which will delay a reduction of the field current in case different field weakening points are set (see GENER.EMF_REF /
GENER.WEAK_POINT) and the drive starts field weakening very often because of a high gain at the speed controller. This time delay will give the speed controller a chance to "correct" himself and avoid a bridge reversal.

1018	FB_P: I2	SC: 0.01	HL: 100	LL: 0	D: 0	U: s

Group 11: FAULTS, ALARMS

USER_EVENT3.TEXT						
Parameter of EVENT3-function block. (S15/16) This parameter shows the event's name: EXT. IND. 3						
1111	FB_P: -	SC: -	HL: -	LL: -	D: -	U: -
USER_EVENT3.DLY Parameter of EVENT3-function block. Selects the activation delay. External event has to be active for longer than the activation delay until it is accepted.						
1112	FB_P: 12	SC: 0.01	HL: 32767	LL: 0	D: 0	U: s
USER_EVENT4.[IN] Input of EVENT4-function block. (S15/16) Activates logging of an external alarm or fault into the Fault Logger.						
1113	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U:
USER_EVENT4.TYPE Parameter of EVENT4-function block. Selects the type of external event: (see USER_EVENT1.TYPE for available values).						
1114	FB_P: E2	SC: -	HL: 4	LL: 0	D: 0	U:
USER_EVENT4.TEXT Parameter of EVENT4-function block. (S15/16) This parameter shows the event's name: EXT. IND. 4						
1115	FB_P: -	SC: -	HL: -	LL: -	D: -	U: -
USER_EVENT4.DLY Parameter of EVENT4-function block. Selects the activation delay. External event has to be active for longer than the activation delay until it is accepted.						
1116	FB_P: 12	SC: 0.01	HL: 32767	LL: 0	D: 0	U: s
USER_EVENT5.[IN] Input of EVENT5-function block. (S15/16) Activates logging of an external alarm or fault into the Fault Logger.						
1117	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
USER_EVENT5.TYPE Parameter of EVENT5-function block. Selects the type of external event: (see USER_EVENT1.TYPE for available values).						
1118	FB_P: E2	SC: -	HL: 4	LL: 0	D: 0	U: -
USER_EVENT5.TEXT Parameter of EVENT5-function block. (S15/16) This parameter shows the event's name: EXT. IND. 5						
1119	FB_P: -	SC: -	HL: -	LL: -	D: -	U: -
USER_EVENT5.DLY Parameter of EVENT5-function block. Selects the activation delay. External event has to be active for longer than the activation delay until it is accepted.						
1120	FB_P: 12	SC: 0.01	HL: 32767	LL: 0	D: 0	U: s
USER_EVENT6.[IN] Input of EVENT6-function block. (S15/16) Activates logging of an external alarm or fault into the Fault Logger.						
1121	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -

USER_EVENT6.TYPE						
Parameter of EVENT6-function block. Selects the type of external event: (see USER_EVENT1.TYPE for available values).						
1122	FB_P: E2	SC: -	HL: 4	LL: 0	D: 0	U: -
USER_EVENT6.TEXT						
Parameter of EVENT6-function block. This parameter shows the event's name: EXT. IND. 6						
1123	FB_P: -	SC: -	HL: -	LL: -	D: -	U: -
USER_EVENT6.DLY						
Parameter of EVENT6-function block.						15/16)
Selects the activation delay.						
External event has to be active for longer than the activation delay until it is accepted.						
1124	FB_P: 12	SC: 0	HL:	LL: 0	D: 0	U: s

Group 12: MAINTENANCE

DRIVEMODE

Parameter of MAINTENANCE-function block.
(S2/16)

This parameter is used to start special drive functions like autotuning for controllers.
After the drive function has completed DRIVEMODE changes to value 0 . If an error occurs during drive function, DRIVEMODE is set to value 12. The reason for the error can be seen from the signal COMMIS_STAT1 (11201).
Following drive functions are available:

0	$=$ NOT ACTIVATED		(No function is active)
1	$=$ CLEAR FAULT LOGG.		(Clear the contents of Fault Logger)
2	$=$ CALC PROGRAM LOAD		(Calculate the processor load)
3	$=$ ARM. AUTOTUNING		(Autotuning of armature current controller)
4	$=$ ARM. MAN. TUNING		(Manual tuning of armature current controller)
5	$=$ FEX2/3 AUTOTUNING		(Autotuning of the first field exciter
6	$=$ MOT2 FEXC AUTOTUN		(Autotuning of the second field exciter
7	$=$ FEXC2/3 MAN.TUNIN		(Manual tuning of the first field exciter)
8	$=$ MOT2 FEXC MAN.TUN		(Manual tuning of the second field exciter)
9	$=$ SPD LOOP MAN.TUN		(Manual tuning of the speed loop)
10	$=$ EMF CNTR MAN.TUN		(Manual tuning of EMF controller

Following value is shown during PROGRAM_LOAD-function:
11 = WAIT A MOMENT...
Following value is shown if autotuning fails:
12 = FAILED, SEE 112-01

1201	FB_P: E2	SC: -	HL: 10	LL: 0	D: 0
U: -					

CMT_DCS500_ADDR

Parameter of MAINTENANCE-function block.
(S2/16)
The node address of the drive in the communication link for CMT/DCS 500 PC-tool.
The new value is effective only after the power is switched off and on again.

1202	FB_P: I2	SC: -	HL: 250	LL: 1	D: 250
U: -					

DRIVE_ID
Parameter of MAINTENANCE-function block.
This parameter is reserved for future extensions. As long as a panel CDP 312 and a DCS
500B converter is connected to each other this parameter has to be kept to default. It will give a "name" to a drive in a multidrive system.

1203	FB_P: I2	SC: -	HL: 31	LL: 1	D: 1	U: -
```POT1_VALUE Parameter of MAINTENANCE-function block. Constant test reference 1 for the manual tuning function.```						
1204	FB_P: I2	SC: -	HL: 32767	LL: -32768	D: 1000	U: -
```POT2_VALUE Parameter of MAINTENANCE-function block. Constant test reference 2 for the manual tuning function.```						
1205	FB_P: I2	SC: -	HL: 32767	LL: -32768	D: 0	U: -
PERIOD_BTW.POT1/2 Parameter of MAINTENANCE-function block. The time period of square wave generator for the manual tuning function.						
1206	FB_P: I2	SC: 0.01	HL: 30000	LL: 1	D: 100	U: s

$\begin{array}{ll} 3 \text { = Reserved } \\ 4=\text { FEXLINK NODE 1 } & \begin{array}{l} \text { functionality of (2) plus reading of references / } \\ \text { commands via X16 as first field exciter } \\ \text { functionality of (2) plus reading of references / } \end{array} \\ 5=\text { FEXLINK NODE } 2 & \begin{array}{l} \text { commands via X16 as second field exciter } \\ \text { functionality of (2) plus transfer of references / } \\ \text { commands via X16 to other field exciter(s) } \end{array} \\ 6=\text { MG-SET } & \end{array}$						
	P: E2		HL: 6	LL: 0	D: 0	
DI/OVP Input of DCF_FIELDMODE-function block (S2/16 \| S21.232) Based on the wiring diagram example the relay contact of the overvoltage protection DCF 506 is connected to the digital input 2 of the SDCS-CON-2 board. By default this hardware input is connected to the input of the DCF fieldmode block. In case a different hardware input is used, adapt the interconnection!						
1216	FB_I: C4	SC:	HL: 1999	LL: 0	D: 1070	
OVP_SELECT Parameter of DCF_FIELDMODE-function block (S2/16 \| S21.232) If the overvoltage protection unit DCF 506 has triggered because of an overvoltage condition the reaction of the converter can be selected by this parameter: $0=$ OVP ALARM 1 = OVP FAULT indication and blocking of current controller; controller is released, when trigger signal goes back to logic "0" level indication, forcing the current to zero and switch off						
		SC:	HL: 1	LL: 0	D: 0	

Group 13: MOTOR 1 FIELD

[F1_REF]						
Input of MOTOR_1_FIELD-function block. Field current reference for motor 1 field exciter.						
1301	FB I: C4	SC: FCURR	HL: 19999	LL: 0	D: 11003	U: -
[F1_FORCE_FWD]						
Input of MOTOR_1_FIELD-function block. Command to force motor field in forward direction.						
1302	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
[F1_FORCE_REV]						
Input of MOTOR_1_FIELD-function block. Command to force motor field in reverse direction.						
1303	FB_I: C4 \|	SC: BI	HL: 19999	LL: 0	D: 0	U: -
[F1_ACK]						
Input for analog or digital acknowledge signal from external field excitation system.						
1304	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 0	U: -
F1_CURR_GT_MIN_L						
Parameter of MOTOR_1_FIELD-function block. Tripping level of minimum field current monitoring function.						
When field weakening function is used, this limit must be low enough to prevent minimum field faults at high speed!						
1305	FB_P: 12 \|	SC: FCURR	HL: 4095	LL: 0	D: 2047	U: A
F1_OVERCURR_L						
Parameter of MOTOR_1_FIELD-function block. Field overcurrent limit for motor 1 . The default limit is 115% of nominal field current.						
1306	FB_P: 12 \|	SC: FCURR	HL: 8191	LL: 0	D: 4710	U: A
F1_CURR_TC						
Parameter of MOTOR_1_FIELD-function block (S8/16). Filter time constant for actual field current measurement. (lower HL in S 21.232)						
1307	FB_P: 12	SC: 0.01	HL: 1000	LL: 0	D: 0	U: s
F1_KP						
Parameter of MOTOR_1_FIELD-function block. Proportional gain for PI controller in the field excitation unit .						
1308	FB_P: 12 \|	SC: -	HL: 4096	LL: 0	D: 1	U: -
F1_KI						
Parameter of MOTOR_1_FIELD-function block. Integral action time for PI controller in the field excitation unit.						
1309	FB_P: 12	SC: 0.01	HL: 4096	LL: 0	D: 20	U: s
F1_U_AC_DIFF_MAX						
Parameter of MOTOR_1_FIELD_OPTIONS-function block Threshold level for free-wheeling function. If two successive AC voltage measurements in field exciter differ more than this then the 2 phase field exciter activates the free-wheeling function. (lower HL in S21.232)						
1310	FB_P: 12	SC: 1.0	HL: 1000	LL: 0	D: 10	U: \%

F1_U_LIM_N						
Parameter of MOTOR_1_FIELD-function block.						/16
Negative output voltage limitation for current controller in field excitation unit. Minimum output voltage $=-4096$.						
1311	FB_P: 12	SC: VOLT	HL: 0	LL: -4096	D: -4096	U: \%
F1_U_LIM_P						
Parameter of MOTOR_1_FIELD-function block. (S8/16) Positive output voltage limitation for current controller in field excitation unit. Maximum output voltage $=4096$.						
1312	FB_P: 12	SC: VOLT	HL: 4096	LL: 0	096	
F1_RED.SEL						
Parameter of MOTOR_1_FIELD -function block. Enables field heating function for the motor when RUN-command is not active.						
The function is activated 10 s after the RUN-command has been removed.$0 \text { = DISABLE }$						
1 = ENABLE.						
1313	FB_P: E2	SC:	L:	LL: 0	D:	
F1_RED.REF						
Parameter of MOTOR_1_FIELD-function block. Field current reference when field heating function is active or when the motor is at standstill. Default is 30% of nominal value.						
,	FB_P: 12	SC: FCURR	HL: 4095	LL:	D: 1228	
OPTI.REF_GAIN						
Parameter of MOTOR_1_FIELD_OPTIONS-function block. Used in OPTI-TORQUE function. Gain factor used to multiply torque reference when field current reference, F1_CURR_REF (11301), is calculated. Field current reference is calculated from torque reference: Field current reference $=$ OPTI.REF_GAIN * torque reference $/ 98$.						
1315	FB_P: 12	SC: 1	HL: 10000	LL: 0	D: 100	
OPTI.REF_MIN_L						
Parameter of MOTOR_1_FIELD_OPTIONS-function block. (S8/16) Used in OPTI-TORQUE function. Minimum field level when OPTI_TORQUE function is selected with FIELD_MODE (1001) parameter.						
Default value is 15% of nominal field current. See next parameter.						
1316	FB_P: I2	SC: FCURR	HL: 4096	LL: 0	D: 614	U: A
OPTI.REF_MIN_TD Parameter of MOTOR_1_FIELD_OPTIONS-function block. Used in OPTI-TORQUE function. Time delay for minimum field indication. The field reference can't be below the limit OPTI.REF_MIN_L longer than this time when OPTI_TORQUE function is active or when field reversal is done						
1317	FB_P: 12	SC: 1	HL: 20000	LL: 0	D: 200	$\mathrm{U}: \mathrm{m}$
REV.REV_HYST						
Parameter of MOTOR_1_FIELD_OPTIONS-function block. (S8/16)						
Used in field reversal function. Hysteresis for actual field current comparator. During field reversal output of the comparator will produce the flag FIELD1_REV_ACK located in						
FEX_STATUS (11203)). Hysteresis is needed to avoid possible noise and offset of the field current signal to affect the FIELD1 REV ACK.						
1318	FB_P: 12	SC: FCURR	HL: 4095	LL: 0	D: 80	J: A

REV.REF_HY						
Parameter of MOTOR_1_FIELD_OPTIONS-function block. (S8/16)						
Used in field reversal function. Hysteresis for torque reference during field reversal. The absolute value of torque reference must be bigger than REV.REF_HYST before the field reversal can take place.						
1319	FB_P: 12	SC: TORQ	HL: 4000	LL: 0	D: 80	U: \%
REV.FLUX_TD						
Parameter of MOTOR_1_FIELD_OPTIONS-function block. Time period during field reversal when field current and internal FLUX of the motor don correspond to each other. The flag FIELD1_REV_ACK located in FEXC_STATUS (11203) changes state after this time delay.						
1320	FB_P: 12	SC:	HL: 20000	LL: 0	D: 0	U: m
F1_CURR_MIN_TD						
Parameter of MOTOR_1_FIELD_OPTIONS-function block. (S8/16 I S21.233) This parameter defines the time the actual field current is allowed to be lower than the threshold F1_CURR_GT_MIN_L (1305) without error signal F39 (NO FIELD ACK). As long as the actual field current is higher than the threshold, the flag FIELD1_CURR_MIN_ located in FEXC_STATUS (11203) is set.						
1321	FB_P: 12	SC: 0.01	HL: 1000	LL: 10	D: 200	U: s

Group 14: MOTOR 1 PROTECT.

MOT1.[TEMP_IN] Input of MOTOR_1_PROTECTION-function block. Input where temperature measurement is connected.					S9/16)	
1401	FB_I: C4	SC:	HL: 19999	LL:	D: 0	U: -
MOT1.TEMP_ALARM_L Parameter of MOTOR_1_PROTECTION-function block. (S9/16) Motor overtemperature alarm is activated when measured temperature (PT100) or resistance value (PTC) exceeds this limit.						
1402	FB_P: I2	SC: 1	HL: 4000	10	D: 0	U
MOT1.TEMP_FAULT_L Parameter of MOTOR_1_PROTECTION-function block. (S9/16) Motor overtemperature fault is activated and the drive will trip when measured temperature (PT100) or resistance value (PTC) exceeds this limit.						
1403	FB_P: I2	SC: 1	HL: 4000	L. 10		
[KLIXON_IN] Input of MOTOR_1_PROTECTION-function block. (S9/16) Input where temperature alarm is connected. Drive will tripped when the input value is not zero.						
1404	FB_I: C4	SC: BI	999	LL: 0	D: 0	U: -
MODEL1.SEL Parameter of MOTOR_1_PROTECTION-function block. (S9/16) Used to activate the temperature model for motor1. The model will estimate the temperature of the motor based on motor current and given model parameters. $\begin{aligned} & 0=\text { DISABLED } \\ & 1=\text { ENABLED. } \end{aligned}$						
1405	FB_P	SC:	HL: 1	LL	D:	U: -
MODEL1.CURR Parameter of MOTOR_1_PROTECTION-function block. (S9/16) Nominal current parameter for thermal model. When motor current is MODEL1.CURR and after a time of about 5 times MODEL1.TC, the output of thermal model will be 100						
1406	FB_P: I2	SC:MCURR	HL: 10000	LL: 0	D: 4096	U: A
MODEL1.ALARM_L Parameter of MOTOR_1_PROTECTION-function block. (S9/16) Motor overtemperature alarm is activated when calculated temperature exceeds this limit.						
1407	FB_P: I2	SC: 1	HL: 130	LL: 10	D: 120	$\mathrm{U}: \%$
MODEL1.TRIP_L Parameter of MOTOR_1_PROTECTION-function block. (S9/16) Motor overtemperature fault is activated and the drive will trip when calculated temperature exceeds this limit.						
1408	FB_P: I2	SC: 1	HL: 130	LL: 10	D: 130	U:
MODEL1.TC Parameter of MOTOR_1_PROTECTION-function block. (S9/16) Thermal time constant parameter for thermal model. The time in which the temperature rises to 63% of the nominal value. When motor current is MODEL1.CURR and after a time of about 5 times MODEL1.TC, the output of thermal model will be 100.						
1409	FB_P: I2	SC: 1	HL: 5400	LL: 0	D: 240	U:

Group 15: MOTOR 2 FIELD

F2_RED.REF

Parameter of MOTOR_2_FIELD -function block.
($\mathrm{S} 8 / 16$)
Field current reference when field heating function is active or when the motor is at standstill. Default is 30% of nominal value

	1511	FB_P: I2	SC: FCURR	HL: 4095	LL: 0	D: 1228	$\mathrm{U}: \mathrm{A}$

Group 16: MOTOR 2 PROTECT.

Group 17: RAMP GENERATOR

$\begin{aligned} & \text { RAMP.[IN] } \\ & \text { Input of RAMP GENERATOR-function block. } \\ & \text { Source for the speed reference. } \end{aligned}$					(S4/16)	
1701	FB_I: C4	SC: SPEED	HL: 19999	LL: 0	D: 11903	U: -
RAMP.[RES_IN] Input of RAMP GENERATOR-function block. Used to set ramp input to zero.						
1702	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
```RAMP.[HOLD] Input of RAMP GENERATOR-function block. Used to hold the present ramp output value .```						
1703	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
$\begin{aligned} & \text { RAMP.[FOLLOW_IN] } \\ & \text { Input of RAMP GENERATOR-function block. } \\ & \text { Used to make the ramp output to follow the ramp input value. } \end{aligned}$						
1704	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
RAMP.[FOLL_ACT]   Input of RAMP GENERATOR-function block.   Used to make the ramp output to follow the signal at RAMP.[SPEED_SET], connected to SPEED ACT (12102) by default.						
1705	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
RAMP.[RES_OUT] Input of RAMP GENERATOR-function block. Used to set ramp output to zero.						
1706	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
RAMP.[T1/T2]   Input of RAMP GENERATOR-function block.   Selects the used set of ramp times:   $0=$ ACCEL1, DECEL1 and SMOOTH1 are used   $<>0=$ ACCEL2, DECEL2 and SMOOTH2 are used.						
1707	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
ACCEL1   Parameter of RAMP GENERATOR-function block.   The time in which the drive will accelerate from zero speed to nominal speed.						
1708	FB_P: 12	SC: 0.1	HL: 30000	LL: 1	D: 200	U: s
DECEL1   Parameter of RAMP GENERATOR-function block.   ( $\mathrm{S} 4 / 16$ )   The time in which the drive will decelerate from nominal speed to zero speed.						
1709	FB_P: 12	SC: 0.1	HL: 30000	LL: 1	D: 200	U: s
SMOOTH1   Parameter of RAMP GENERATOR-function block.   The speed ramp output softening time (S-RAMP function). The total time how long the softening function will last.						
1710	FB_P: I2	SC: 1	HL: 20000	LL: 0	D: 0	$\mathrm{U}: \mathrm{ms}$
ACCEL2   Parameter of RAMP GENERATOR-function block.   ( $\mathrm{S} 4 / 16$ )   The time in which the drive will accelerate from zero speed to nominal speed.						
1711	FB_P: I2	SC: 0.1	HL: 30000	LL: 1	D: 100	U: s


DECEL2						
Parameter of RAMP GENERATOR-function block.   The time in which the drive will decelerate from nominal speed to zero speed.						
1712	FB_P: 12	SC: 0.1	HL: 30000	LL: 1	D: 100	U: s
SMOOTH2						
Parameter of RAMP GENERATOR-function block.   The speed ramp output softening time (S-RAMP function).						
The total time how long the softening function will last.						
1713	FB_P: 12	SC: 1	HL: 20000	LL: 0	D: 0	U: ms
EMESTOP_RAMP						
Parameter of RAMP GENERATOR-function block.   The time in which the drive will decelerate from nominal speed to zero speed in emergency stop situation.						
1714	FB_P: 12	SC: 0.1	HL: 30000	LL: 1	D: 200	U: s
SPEEDMAX						
Parameter of RAMP GENERATOR-function block.   Positive limit for speed reference.						
1715	FB_P: 12	SC: SPEED	HL: 30000	LL: 0	D: 20000	U: rpm
SPEEDMIN						
Parameter of RAMP GENERATOR-function block.   (S4/16)   Negative limit for speed reference.						
1716	FB_P: 12	SC: SPEED	HL: 0	LL: -30000	D: -20000	U: rpm
STARTSEL						
Parameter of RAMP GENERATOR-function block.   Start-function when the motor is rotating						
0 = START_FROM_0 (ramp				put $=0$ at		
1 = FLYING_START			(ramp output = actual speed at start.)			
1717	FB_P: E2	SC: -	HL: 1	LL: 0	D: 0	U: -
ACC_COMP.MODE						
Parameter of RAMP GENERATOR-function block.   Acceleration compensation function						
$0=$ DISABLED						
$1=$ ENABLED.						
1718	FB_P: E2	SC: -	HL: 1	LL: 0	D: 0	U: -
ACC_COMP.TRMIN						
Parameter of RAMP GENERATOR-function block. ( S4/16)						
The time in which the drive will accelerate from zero speed to the maximum speed using nominal torque ( $\mathrm{T}_{N}$ ) of the motor.						
1719	FB_P: I2	SC: 0.1	HL: 32767	LL: 0	D: 0	U: s
RAMP.[SPEED_SET]						
Input of RAMP GENERATOR-function block.						
1720	FB_l: C4	SC: SPEED	HL: 19999	LL: 0	D: 12102	U: -

## Group 18: REFERENCE CHAIN

Input of REF_SUM-function block. Summation point before Speed Contoller					( S5/16 )	
1801	FB_I: C4	SC: SPEED	HL: 19999	LL: 0	D: 11701	U: -
REF_   Input   Summ	M.[IN2] REF_SUM ion point	unction block ore Speed C				16 )
1802	FB_l: C4	SC: SPEED	HL: 19999	LL: 0	D: 0	U: -

## Group 19: REFERENCE SOURCES

CONST_REF.[ACT1]						
Input of CONST_REF-function block.   Selects the constant reference REF1 to block output.   ACT1 overrides other ACT-inputs.						
1901	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
CONST_REF.[ACT2]						
Input of CONST_REF-function block.   Selects the constant reference REF2 to block output.   ACT2 overrides ACT3- and ACT4-inputs.						
1902	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
CONST_REF.[ACT3]						
Input of CONST_REF-function block.   Selects the constant reference REF3 to block output.   ACT3 overrides ACT4-input.						
1903	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
CONST_REF.[ACT4]						
Input of CONST_REF-function block.   Selects the constant reference REF4 to block output.						
1904	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
CONST_REF.DEF						
Parameter of CONST_REF-function block.This value is selected when none of four ACT-inputs is active. (S4/16)						
1905	FB_P: 12	SC: SPEED	HL: 32767	LL: -32767	D: 1000	U: rpm
CONST_REF.REF1						
Parameter of CONST_REF-function block.   This speed reference is selected when ACT1-input is active.						
1906	FB_P: 12	SC: SPEED	HL: 32767	LL: -32767	D: 1500	U: rpm
CONST_REF.REF2						
Parameter of CONST_REF-function block.   This speed reference is selected when ACT2-input is active.						
1907	FB_P: 12	SC: SPEED	HL: 32767	LL: -32767	D: 0	U: rpm
CONST_REF.REF3						
Parameter of CONST_REF-function block.   This speed reference is selected when ACT3-input is active.						
1908	FB_P: 12	SC: SPEED	HL: 32767	LL: -32767	D: 0	U: rpm
CONST_REF.REF4						
Parameter of CONST_REF-function block.   This speed reference is selected when ACT4-input is active.						
1909	FB_P: 12	SC: SPEED	HL: 32767	LL: -32767	D: 0	U: rpm
REFSEL.[IN1]						
Input of REF_SEL-function block.   Speed reference input which is selected with SEL1-input.						
1910	FB_l: C4	SC: SPEED	HL: 19999	LL: 0	D: 10104	U: -
REFSEL.[SEL1]						
Input of REF_SEL-function block.   Selects the speed reference input IN1 to the output.						
1911	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 10715	U: -


REFSEL.[IN2]						
Input of REF_SEL-function block.   Speed reference input which is selected with SEL2-input.						
1912	FB_I: C4	SC: SPEED	HL: 19999	LL: 0	D: 11901	U: -
REFSEL.[SEL2]						
Input of REF_SEL-function block.   Selects the speed reference input IN2 to the output.						
1913	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 11902	U: -
REFSEL.[IN3]						
Input of REF_SEL-function block.   Speed reference input which is selected with SEL3-input.						
1914	FB_I: C4	SC: SPEED	HL: 19999	LL: 0	D: 0	U: -
REFSEL.[SEL3]						
Input of REF_SEL-function block.   Selects the speed reference input IN3 to the output.						
1915	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
REFSEL.[ADD]						
Additional speed reference which is added to the output.						
1916	FB_I: C4	SC: SPEED	HL: 19999	LL: 0	D: 11904	U: -
REFSEL.[REV]						
Input	REF_SEL-	unction block.				/16)
Command which changes the sign of the block output.						
1917	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
SOFTPOT.[INCR]						
Used to activate incrementing of output value.						
1918	FB_I: C 4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
SOFTPOT.[DECR]						
Input of SOFT_POT-function block.   Used to activate decrementing of output value.						
1919	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
SOFTPOT.[FOLLOW]						
Input of SOFT_POT-function block.   Used to make the output to follow actual motor speed.						
1920	FB_I: C4	SC: BI	HL: 19999	LL:0	D: 0	U: -
SOFTPOT.OHL						
Parameter of SOFT_POT-function block. (S4/16)Positive limit of the output						
1921	FB_P: 12	SC: SPEED	HL: 23000	LL: -23000	D: 5000	U: rpm
SOFTPOT.OLL						
Parameter of SOFT_POT-function block. Negative limit of the output.						/16)
1922	FB_P: 12	SC: SPEED	HL: 23000	LL: -23000	D: -5000	U: rpm

## SOFTPOT.[ENABLE]

Input of SOFT_POT-function block.
(S4/16 I S21.233)
In default condition the output of the SOFT_POT function block is reset to zero, if the drive is stopped by removing the RUN command from the binary input. In case this behaviour is not useful change the interconnection to a different signal. Definition of this input:
The output SOFT_POT:OUT (11904) is kept to logic level $=0$ as long as this input is not connected or the connected signal (default: RUNNING (10903)) has logic level $=0$. If the connected signal is set to logic level $=-1$ the function is enabled.

1923	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 10903
U: -					

## Group 20: SPEED CONTROLLER



SPC.[HOLD]						
Input of SPEED_CONTROL-function block.   Command to keep present value of the integral part of speed controller.						
2012	FB_l: C4	SC: BI	HL: 19999	LL: 0	D: 0	U: -
SPC.DROOPING						
Parameter of SPEED_CONTROL-function block.   A decrease in speed when the motor has a nominal load ( $\mathrm{T}_{\mathrm{N}}$ ).						
2013					D: 0	U: \%
SPC.KP						
Parameter of SPEED_CONTROL-function block. ( $55 / 16$ )						
The proportional gain of the speed controller. SPC.KP $=100 \Rightarrow$ gain $=1$.						
2014	FB_P: 12	SC: 1	HL: 32000	LL: 0	D: 500	U: \%
SPC.KPSMIN   Parameter of SPEED_CONTROL-function block.   ( $55 / 16$ )   The proportional gain of the speed controller when output of the speed controller is 0 . Used to have lower gain when torque is small. SPC.KPSMIN =100 $=>$ gain $=1$						
2015	FB_P: 12	SC: 1	HL: 32000	LL: 0	D: 0	U: \%
SPC.KPSPOINT						
Parameter of SPEED_CONTROL-function block.   Used to have lower gain when torque is small. The value of the speed controller output where the gain is SPC.KP. Between controller output values 0 ...SPC.KPSPOINT the proportional gain will increase from SPC.KPSMIN to SPC.KP.						
2016	FB_P: 12	SC: TORQ	HL: 16000	LL: 0	D: 0	U: \%
SPC.KPSWEAKFILT						
Parameter of SPEED_CONTROL-function block. Used to have lower gain when torque is small.						
The time constant of a filter that smoothens the changes of the proportional gain						
2017	FB_P: 12	SC: 1	HL: 10000	LL: 0	D: 500	$\mathrm{U}: \mathrm{ms}$
SPC.KI						
Parameter of SPEED_CONTROL-function block. Integral action time of the controller.						
2018	FB_P: 12	SC: 1	HL: 32000	LL: 0	D: 5000	$\mathrm{U}: \mathrm{ms}$
SPC.TD						
Parameter of SPEED_CONTROL-function block.   Time constant for the derivative part of the controller.						
2019	FB_P: 12	SC: 1	HL: 32000	LL: 0	D: 0	U: ms
SPC.TF						
Parameter of SPEED_CONTROL-function block.   The filter time constant for the derivative part of the controller.						
2020	FB_P: 12	SC: 1	HL: 32000	LL: 5	D: 50	$\mathrm{U}: \mathrm{ms}$
ERR. [SPEED_ACT]						
Input of SPEED_ERROR-function block.   Actuel speed value for speed error calculation.						
2021	FB_l: C4	SC: SPEED	HL: 19999	LL: 0	D: 12102	U: -

## Group 21: SPEED MEASUREMENT

TACHOPULS_NR   Parameter of SPEED_MEASUREMENT-function block. Number of pulses from the tacho when it rotates one turn.						
2101	FB	SC: 1	\| HL: 10000	LL: 125	04	
SPEED_MEAS_MODE   Parameter of SPEED_MEASUREMENT-function block.   Selects the type of speed measurement used:   $0=$ ENCODER A + , B dir   1 = ENCODER A+-   2 = ENCODER A+-, B dir   3 = ENCODER A+-, B +-   4 = ANALOG TACHO   5 = EMF SPEED ACT   (ch. A: pos. edges for speed; ch B: direction)   (ch. A: pos. and neg. edges for speed; ch. B: not used)   (ch. A: pos. and neg. edges for speed; ch. B: direction)   (all edges of the channels $A$ and $B$ are used)   (AI channel AITAC is used for analog tacho input)   (speed actual is calculated from EMF of motor)						
2102	FB_P: E2	SC:	HL: 5	LL: 0	D: 5	
SPEED_SCALING   Parameter of SPEED_MEASUREMENT-function block.   Speed reference of the motor in 0.1 rpm , when speed reference is 20000.   Notice that when this value is changed, all speed related parameters and signals will have different values when they are shown in [rpm] in the panel or in CMT/DCS 500:   AITAC_HIGH_VALUE,   Al1_LOW_VALUE,   SPEEDMAX,   CONST_REF.REF1-4,   ERR.WIN_SIZE,   SPEED_L2,   MON.MEAS_LEV,   AITAC:OUT+,   Al1:OUT-,   REF_SUM:OUT,   REF_SEL.OUT,   ERR:STEP_RESP,   SPEED_ACT_FILT.   AITAC_LOW_VALUE, FIELD_WEAK_POINT, SPEEDMIN,   SOFTPOT.OHL,   MIN_SPEED_L,   OVERSPEEDLIMIT,   MAX_CURR_LIM_SPD,   AITAC:OUT-,   RAMP:OUT,   LOCAL_SPEED_REF,   SOFTPOT:OUT,   SPEED_ACT_EMF,   Al1_HIGH_VALUE, GENER.WEAK_POINT, CONST_REF.DEF, SOFTPOT.OLL, SPEED_L1,   STALL.SPEED,   Al1:OUT+, SPEED REFERENCE, CONST_REF:OUT, ERR:OUT, SPEED_ACT,						
2103	FB_P: I2	SC: 0.1	HL: 65000	L: 100	D: 15000	
SPEED_ACT_FTR   Parameter of SPEED_MEASUREMENT-function block. Filter time constant for the speed actual filter. Output of the filter is the signal SPEED_ACT (12102).						
2104	FB_P: I2	SC: 1	HL: 1000	LL: 0	D: 0	: m
SPEED_ACT_FLT_FTR   Parameter of SPEED_MEASUREMENT-function block. Filter time constant for the signal SPEED_ACT_FILT (12103). This speed actual is intended for display on panel or CMT.						
2105	FB_P: I2	SC: 1	HL: 20000	LL: 0	D: 500	U ms

## Group 22: SPEED MONITOR

MIN_SPEED_L						
Parameter of SPEED_MONITOR-function block						( S5/16 )
Limit value for minimum speed detection.						
When speed is below this limit MIN_SPEED (12201) output of the function block is set.						
2201	FB_P: I2	SC: SPEED	HL: 30000	LL: 0	D: 50	U: rpm
SPEED_L1						
Parameter of SPEED_MONITOR-function block. ( S5/16 )						
Limit value for speed level detection. When speed is above this limit SPEED_GT_L1 (12202) output of the function block is set.						
2202	FB_P: I2	SC: SPEED	HL: 30000	LL: 0	D: 5000	U: rpm
SPEED_L2						
Parameter of SPEED_MONITOR-function block.   Limit value for speed level detection. When speed is above this limit SPEED_GT_L2 (12203) output of the function block is set.						
2203	FB_P: I2	SC: SPEED	HL: 30000	LL: 0	D: 10000	U: rpm
OVERSPEEDLIMIT						
Parameter of SPEED_MONITOR-function block. ( S5/16 )						
Limit value for overspeed detection. When speed is above this limit OVERSPEED (12204) output of the function block is set an the drive will trip.						
2204	FB_P: I2	SC: SPEED	HL: 30000	LL: 0	D: 23000	U: rpm
STALL.SEL						
Parameter of SPEED_MONITOR-function block. Selection parameter for stall protection:						( S5/16 )
Selec	parameter DISABLED ENABLED	for stall prote	tion:			
2205	FB_P: E2	SC: -	HL: 1	LL: 0	D: 0	U: -
STALL.SPEED						
Parameter of SPEED_MONITOR-function block. Speed limit value for stall detection.						S5/16 )
						Speed limit value for stall detection.   When speed is below this limit and torque is higher than STALL.TORQUE for a time lo
than STALL.TIME, the drive will trip.						me lo
2206	FB_P: I2	SC: SPEED	HL: 20000	LL: 0	D: 50	U: rpm
STALL.TORQUE						
Parameter of SPEED_MONITOR-function block. ( S5/16)						
Torque limit value for stall detection. Description see STALL.SPEED (2206).						
2207	FB_P: I2	SC: TORQ	HL: 16000	LL: 0	D: 3000	U: \%
STALL.TIME						
Parameter of SPEED_MONITOR-function block. ( S5/16 )						
2208	FB_P: I2	SC: 1	HL: 180	LL: 1	D: 10	$\mathrm{U}: \mathrm{s}$
MON.MEAS_LEV						
Parameter of SPEED_MONITOR-function block. ( S5/16)						
This function is comparing speed actual from pulse or analog tacho and the calculated						
EMF_ACT (10506) of the motor. If speed measurement fails the speed is zero, but the EMF_ACT (10506) will increase when the drive is started.						
EMF_ACT (10506) is over the limit MON.EMF_V. Otherwise the drive trips to the speed measurement fault.						
2209	FB_P: I2	SC: SPEED	HL: 20000	LL: 0	D: 200	$\mathrm{U}: \mathrm{rpm}$


MON.EMF_V   Parameter of SPEED_MONITOR-function block.   Description see MON.MEAS_LEV $(2209)$.								(S5/16 )
2210	FB_P: I2	SC: 1	HL: 1500	LL: 0	D: 50			

## Group 23: TORQUE and CURRENT LIMITS

[SPC_TORQ_MAX]						
Input of TORQUE/CURRENT_LIMITATION-function block.   Maximum torque limit for the speed controller.   Can be connected to analog input or function block output.						
2301	FB_I: C4	SC: TORQ	HL: 19999	LL: 0	D: 12510	U: -
[SPC_TORQ_MIN]						
Input of TORQUE/CURRENT_LIMITATION-function block.   Minimum torque limit for the speed controller.						
Can be connected to analog input or function block output.						
2302	FB_I: C4	SC: TORQ	HL: 19999	LL: 0	D: 12511	U:
[TREF_TORQ_MAX]						
Input of TORQUE/CURRENT_LIMITATION-function block. Maximum torque limit for the torque reference chain.						
Can be connected to analog input or function block output.						
2303	FB_I: C4	SC: TORQ	HL: 19999	LL: 0	D: 12510	U: -
[TREF_TORQ_MIN]						
Input of TORQUE/CURRENT_LIMITATION-function block.   Minimum torque limit for the torque reference chain.						
Can be connected to analog input or function block output.						
2304	FB_I: C4	SC: TORQ	HL: 19999	LL: 0	D: 12511	U:
TORQ_MAX						
Parameter of TORQUE/CURRENT_LIMITATION-function block.   Maximum torque limit for the drive.						
2305	FB_P: 12	SC: TORQ	HL: 16000	LL: 20	D: 4000	U: \%
TORQ_MIN						
Parameter of TORQUE/CURRENT_LIMITATION-function block.   Minimum torque limit for the drive.						
2306	FB_P: I2	SC: TORQ	HL: -20	LL: -16000	D: -4000	U: \%
ARM_CURR_LIM_P						
Parameter of TORQUE/CURRENT_LIMITATION-function block. Maximum current of the motor bridge.						
2307	FB_P: 12	SC: MCURR	HL: 16383	LL: 0	D: 4095	U: A
ARM_CURR_LIM_N						
Parameter of TORQUE/CURRENT_LIMITATION-function block.   Maximum current of the generator bridge.						
2308	FB_P: 12	SC: MCURR	HL: 0	LL: -16383	D: -4095	U: A


Param   Spee   The   curre	er of TOR ependent d limit na mit.   MAX_CURR max_CURR max_CURR max_CURR max_CURR	UE/CURREN urrent limitatio ed with x whe	_LIMITATIO   e armature	unction block. ent limitation   $X+1 / 4^{\star}(20000-X)$	tarts to de   *(20000 - X)	/16)   se the   X)
2309	FB_P: I2	SC: SPEED	HL: 20000	: 0	D: 20000	
MAX_CURR_LIM_N1   Parameter of TORQUE/CURRENT_LIMITATION-function block.   Speed dependent current limitation.   Armature current limit at speed MAX_CURR_LIM_SPD (2309).						
2310	FB_P: 12	SC: MCURR	HL: 16383	LL: 0	D: 16383	U:
MAX_CURR_LIM_N2   Parameter of TORQUE/CURRENT_LIMITATION-function block.   Speed dependent current limitation.   Armature current limit at speed:   MAX_CURR_LIM_SPD + 1/4* (20000 - MAX_CURR_LIM_SPD).						
2311	FB_P: I2	SC: MCURR	HL: 16383	LL: 0	D: 16383	U: A
MAX_CURR_LIM_N3   Parameter of TORQUE/CURRENT_LIMITATION-function block.   Speed dependent current limitation.   Armature current limit at speed:   MAX_CURR_LIM_SPD + 2/4* (20000-MAX_CURR_LIM_SPD).						
2312	FB_P: 12	SC: MCURR	HL: 16383	LL: 0	D: 16383	U: A
MAX_CURR_LIM_N4   Parameter of TORQUE/CURRENT_LIMITATION-function block.   Speed dependent current limitation.   Armature current limit at speed:   MAX_CURR_LIM_SPD + 3/4* (20000 - MAX_CURR_LIM_SPD).						
2313	FB_P: 12	SC: MCURR	HL: 16383	LL: 0	D: 16383	U: A
MAX_CURR_LIM_N5   Parameter of TORQUE/CURRENT_LIMITATION-function block.   Speed dependent current limitation.   Armature current limit at speed:   20000 (nominal speed of the drive).						
2314	FB_P: 12	SC: MCURR	HL: 16383	LL: 0	D: 16383	U: A


GEAR   Paran   Gear   When   GEAR	ART_TO er of TOR cklash com e torque is TART_TO   GEAR.STAR	UE/CURREN ensation fun hanging dire $Q$ is the torq	LIMITATIO   n.   n, the torqu limit right a	unction block.   mit is reduced the direction	for a whil hange.	16 )
2315	FB_P: 12	SC: TORQ	HL: 16000	LL: 0	D: 16000	U: \%
GEAR   Param   GEAR   GEAR		JE/CURRE is the time Q torque is		unction block ction change	when	16 )
2316	FB_P: 12	SC: 1	HL: 1000	LL: 0	D: 100	$\mathrm{U}: \mathrm{ms}$
GEAR   Param   GEAR   GEAR   of tor	ORQ_RAM er of TOR ORQ_RA ORQ_TIM limit in 3.	UE/CURREN defines the has elapsed $\mathrm{ms}(50 \mathrm{~Hz})$.	LIMITATIO   te of change GEAR.TORQ ee 2315 )	unction block the torque AMP is given	it when as the max	16 )   chan

## Group 24: TORQUE REFERENCE CHAIN

SEL1.[TREF_A]						
Input of TORQ_REF_SELECTION-function block.   Torque reference A is connected to this input.						
2401	FB_l: C4	SC: TORQ	HL: 19999	LL:	D: 10107	U:
SEL1.TREF_A_FTC   Parameter of TORQ_REF_SELECTION-function block.   Filter time constant for torque reference A .						
2402	FB_P: 12	SC: 1	HL: 1000	LL: 0	D: 0	U: ms
SEL1.[LOAD_SHARE]   Input of TORQ_REF_SELECTION-function block.   Load share is connected to this input.   Load share is used to scale the torque reference $A$.   SEL1:OUT = SEL1.[LOAD_SHARE] * SEL1.TREF_A_FTC / 4000						
2403	FB_l: C4	SC: -	HL: 19999	LL: 0	D: 12521	U:
SEL1.[TREF_B]   Input of TORQ_REF_SELECTION-function block.   Torque reference B is connected to this input.						
2404	FB_l: C4	SC: TORQ	HL: 19999	LL: 0	D: 12519	U: -
SEL1.TREF_B_SLOPE   Parameter of TORQ_REF_SELECTION-function block.   The slope of the ramp for torque reference $B$. Given as the time from 0 to $100 \%$ torque.						
2405	FB_P: 12	SC: 1	HL: 10000	LL: 0	D: 0	$\mathrm{U}: \mathrm{ms}$
SEL2.TREF_SEL   Parameter of TORQ_REF_HANDLING-function block.   Selection for the source of torque reference:						
2406	FB_P: E2	SC: -	HL: 5	LL: 0	D: 1	U: -
SEL2.[TREF_SPC]   Input of TORQ_REF_HANDLING-function block.   Torque reference from speed controller is connected to this input.						
2407	FB_l: C4	SC: TORQ	HL: 19999	LL: 0	D: 12004	U: -
SEL2.[TREF_EXT]   Input of TORQ_REF_HANDLING-function block.   External torque reference is connected to this input.						
2408	FB_l: C4	SC: TORQ	HL: 19999	LL: 0	D: 12401	U: -
SEL2.[TORQ_STEP]   Input of TORQ_REF_HANDLING-function block.   Torque step is connected to this input.						
2409	FB_l: C4	SC: TORQ	HL: 19999	LL: 0	D: 12520	U: -

## Group 25: FB EXECUTION

TASK1_EXEC_ORDER Execution order of func						
2501	P: Al2	SC: -	HL: 10000	LL: 0	D: 0	U: -
TASK2_EXEC_ORDER						
2502	P: Al2	SC: -	HL: 10000	LL: 0	D: 0	U:
TASK3_EXEC_ORDER   Execution order of function blocks of task 3, which is executed at 200 ms interva						
2503	P : Al2	SC: -	HL: 10000	LL: 0	D: 0	U:
FB_APPL_ENABLE   Selection parameter for the execution of function block application:						
2504	FB_P: I2	SC: 1	HL: 1	LL: 0	D: 0	U: -
FB_TASK_LOCK   Interlocking flag for function block programming via panel CDP 312 or PC tool CMT. If function block programming is started via one tool, this one will set this flag to prevent similar actions taking place via the other tool. This flag can be actively set by using one of the tools to define this one being the preferred for function block programming.   0 :   (disabled; locking flag is not set)   1: (enabled; locking flag is set).						
2505	FB_P: I2	SC: 1	HL: 1	LL: 0	D: 0	U:

## Group 26: FUNCTION BLOCKS 1

2601-2699: Parameters for application function blocks
See application function block data sheets.

## Group 27: FUNCTION BLOCKS 2

2701-2799: Parameters for application function blocks
See application function block data sheets.

## Group 28: FUNCTION BLOCKS 3

2801-2899: Parameters for application function blocks
See application function block data sheets.

## Group 29: FUNCTION BLOCKS 4

2901-2999: Parameters for application function blocks
See application function block data sheets.

## Group 30: FUNCTION BLOCKS 5

3001-3099: Parameters for application function blocks
See application function block data sheets.

## Group 31: FUNCTION BLOCKS 6

3101-3199: Parameters for application function blocks
See application function block data sheets.

## Group 32: FUNCTION BLOCKS 7

3201-3299: Parameters for application function blocks
See application function block data sheets.

## Group 33: FUNCTION BLOCKS 8

3301-3399: Parameters for application function blocks
See application function block data sheets.

## Group 34: FUNCTION BLOCKS 9

3401-3403: Parameters for application function blocks
See application function block data sheets.

## Group 36: 12-PULSE OPERATING



DIFF_CURR_DELAY						
Parameter of 12-PULSE LOGIC-function block (S13/16).						
Number of cycles in which the currents are allowed to differ (DIFF_CURRENT) without triggering Error 66						
Operative only at the Master drive.						
3606	FB_P: I2	SC: 1	HL: 16383	LL: 3	D: 150	U: -
INHIB_Logic						
Input of 12-PULSE LOGIC-function block						13/16
This input controls the reaction of this converter, if an error is active at the other converter. Interconnection:						
At systems, running in 12 pulse mode all time (no redundancy; Master or Follower never will be used as single 6 pulse drive), connect this input to the output INPUT_X18:15 (13619) at both converters, the Master and the Follower.						
3607	FB_I: C4	SC: BI	HL: 19999	LL: 0	D:	U: -
IREF0_Logic						
Input of 12-PULSE LOGIC-function block						13/16 ).
This input is used to monitor and control the bridge changeover. The Follower is reading the polarity of the signal CURR.-REF. 1 (13605), generated by the Master.						
- Keep this input unconnected, if this converter is used as a Master.   - $\quad$ Connect this input to INPUT_X18:13 (13617), if this converter is used as a Followe						
3608	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U
Bridge_Logic						
Input of 12-PULSE LOGIC-function block						13/16 ).
This input is used to read, which bridge is active at the Follower. Interconnection:						
- $\quad$ Connect this input to INPUT_X18:13 (13617), if this converter is used as a Master.   - Keep this input unconnected, if this converter is used as a Follower.						
3609	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U
Reverse.Logic						
Input of 12-PULSE LOGIC-function block						(S13/16 ).
This input is used to monitor and control the bridge changeover. Both converters are reading the polarity of the signal CURR.-REF2 (13608), generated by it's partner. Interconnection:						
- Connect this input to INPUT_X18:14 (13618) at both converters, the Master and the Follower.						
3610	FB_I: C4	SC: BI	HL: 19999	LL: 0	D: 0	U
[X18:09]						
Input of OUTPUT X18-function block						(S13/16 ).
The signal passed to this pointer is outputted at Plug Connector X18:09. It is operative in all modes.						
Based on the connection diagram this interconnection should be done:						
- Connect this input to IREF1-POLARITY (13606), if this converter is used as a Master.   - Connect this input to BRIDGE (13611), if this converter is used as a Follower.						
3611	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 0	U:

## [X18:10]

Input of OUTPUT X18-function block
(S13/16).
The signal passed to this pointer is outputted at Plug Connector X18:10. It is operative in all modes.
Based on the connection diagram this interconnection should be done:

- $\quad$ Connect this input to IREF2-POLARITY (13609) at both converters, the Master and the Follower.

3612	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 0
[X18:11]   Input of OUTPUT X18-function block					

The signal passed to this pointer is outputted at Plug Connector X18:11. The logic level of the signal transferred via the cable is inverted compared the one connected to. This interconnection can be used for a fail-safe circuit. It is operative in all modes.
Based on the connection diagram this interconnection should be done:

- in case a 12 pulse system without redundancy is in use (see INHIB_LOGIC):
- connect this input to RDY_ON (10901) at both converters, the Master and the Follower
- in case a 12 pulse system with redundancy is in use (see BC-LOGIC):
- connect this input to BC_NOT_ZERO (13621) at both converters, the Master and the Follower

$\mathbf{3 6 1 3}$	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 0
[X18:12]   Input of OUTPUT X18-function block					

The signal passed to this pointer is outputted at Plug Connector X18:12. It is operative in all modes.
Based on the connection diagram this interconnection should be done:

- in case a 12 pulse system without redundancy is in use (see INHIB_LOGIC):
- connect this input to RUNNING (10903), if this converter is used as a Master
- keep this input unconnected, if this converter is used as a Follower
- in case a 12 pulse system with redundancy is in use (see BC_LOGIC):
- keep this input unconnected at both converters, the Master and the Follower

3614	FB_I: C4	SC: -	HL: 19999	LL: 0	D: 0

## ADJ_REF1

Parameter of 12-PULSE LOGIC-function block
(S13/16 ).
The current reference exchanged between the two converters via analog data can be scaled with this parameter. Higher values will increase the reference at that converter this parameter is set, lower values will reduce the reference. In case the DC current of the two converters involved is different, this parameter can serve for correction, if the error is caused by the analog data exchange.

3615	FB_P: I2	SC: 1	HL: 16384	LL: 1	D: 2048
U: -					

## BC-Logic

Input of 12-PULSE LOGIC-function block
(S13/16 ).
In conjunction to input INHIB_LOGIC the converters now exchange the logic level of bit 5 of the signal BC (11209). This bit blocks or releases the current controler. Using this input for the data exchange gives the fastest reaction available. The use of bit 5 of the signal BC is recommended, if the 12 pulse system needs redundancy. In this case, the ON/OFF and the RUN command has to be given to each of the converters via digital inputs depending on the converter needed. This enables the user to use both converters in a 12 pulse mode or having the Master or the Follower running as a stand alone drive.
Interconnection:

- At systems, running in 6 or 12 pulse mode (redundancy; Master and Follower used in 12 pulse mode or only the Master is used in single 6 pulse mode or only the Follower is used in single 6 pulse mode), connect this input to the output INPUT_X18:15 (13619) at both converters, the Master and the Follower.

3616	FB_I: C 4	SC: -	HL: 19999	LL: 0	D: 0

## Group 37: WINDER PARAMETER

## 3701-3726: Parameters for application winder blocks <br> See application function block data sheets.

## Group 38: FUNCTION BLOCKS WINDER

3801-3867: Function for application winder
See application function block data sheets.

## Group 39: FUNCTION BLOCKS 10

```
3901-3988: Parameter for application function blocks
See application function block data sheets.
```


## Group 40: FIELDBUS

Parameter of FIELDBUS-function block.   Selects the fieldbus-adapter.   0 = DISABLE   1 = Fieldbus   2 = Advant / DDCS   3 = MODBUS INTERNAL   4 = RESET fieldb. par.   If Fieldbus is selected the following fieldbus adapters are supported:   PROFIBUS adapter NPBA-02   PROFIBUS   adapter NPBA-12   AC31(CS31)   adapter NCSA-01   MODBUS   adapter NMBA-01   MODBUS+   adapter NMBP-01   CANopen   adapter NCAN-02   DeviceNet   adapter NDNA-02						(S12/16).
4001	FB_P: E2	SC: 1	HL: 4	LL: 0	D: 0	U: -


FIELDBUS_PAR. 2															
Parameter of FIELDBUS-function block.														(S12/16 ).	
		4002	4003	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015
$\begin{array}{\|l} \hline \begin{array}{l} \text { PROFIBL } \\ \text { (NPBA-0 } \end{array} \end{array}$		1	2	6	1	0	30	0	0						
$\begin{aligned} & \text { PROFIBL } \\ & \text { (NPBA-1 } \end{aligned}$		0	0	2	1	0	30	0	0						
AC31 (C	31)	r.o.	0	1	0	1	1	1	1	1					
MODBUS		0	1	3	2	r.o.	r.o.	0							
MODBUS		0	64	r.o.	r.o.	4	5	6	0	0	0	0	0	0	
CANopen		1	1	3	1	10	r.o.	0	1						
DeviceN		63	0	r.o.	0	0	0	0	0	0	1500	1500	0	1000	1
Table shows the default values set by the adapter (r.o. :rea Fieldbus parameter with adapter specific function :   PROFIBUS (NPBA-02)   PROFIBUS MODE   (0) FMS															
										(0) FM   (2) DP   (3) DP   (4) DP   (5) DP	S   -PPO   -PPO   -PPO   -PPO   -PPO				
PROFIBUS (NPBA-12)					PROTOCOL					(0) DP					
MODBUS				MODBUS MODE						Read-   (0) RT   (1) RT	only Uv w U wd	dg:flt   g:rst			
MODBUS+				PROTOCOL						(0) MO	DBU	S PL			
CANopen				WD MODE						(0) FA	TO R	ESE]			
DeviceNet				MAC ID						$0 \ldots 63$					
4002	FB	P: 12	SC:			HL: 25			LL: 0		D:			U: -	
FIELDBUS_PAR. 3															
Parameter of FIELDBUS-function block.															
Fieldbus parameter with adapter specific function															
PROFIB	US	NPBA	-02):		TATI	ON NU	JMBE			2 to 12					
PROFIBUS (NPBA-12):					PO T	YPE				(0) PP (1) PP (2) PP (3) PP (4) PP	O 1 O 2 O 3 O 4 0				
AC31					DUL	E ID				(0) WORD   (1) BINARY					
MODBUS				STATION NUMBER						1-247					
MODBUS+				Station						$1 . . .64$					
CANopen DeviceNet				NODE ID						1 to 127					
				BAUD RATE						(0) $125 \mathrm{kBit} / \mathrm{s}$   (1) $250 \mathrm{kBit} / \mathrm{s}$   (2) $500 \mathrm{kBit} / \mathrm{s}$					
4003	FB	P: 12	SC:			HL: 25			LL: 0		D:			U: -	


FIELDBUS_PAR. 4								
Param	ter of FIELD	BUS-f	unction block.			(S12/16).		
Fieldbus parameter with adapter specific function								
PROFIBUS (NPBA-02)			BIT RATE SELECT		(0) 9.6 KBIT			
				(1) 19.2 KBIT				
				(2) 93.75 KBIT				
				(3) 187.5 KBIT				
				(4) 500 KBIT				
				(5) 1.5 MBIT				
PROFIBUS (NPBA-12)			NODE NUMBER		2 to 126			
AC31			STATION NUMBER		0 ... 5 (Word Mode)			
			(Binar					
MODBUS					BAUD RATE		(0) 1200	
				(1) 2400				
				(2) 4800				
				(3) 9600				
MODBUS+					(4) 19200			
			Good Msg					
CANopen			BAUD RATE		(0) $1 \mathrm{Mbit} / \mathrm{s}$			
					(1) $500 \mathrm{kbit} / \mathrm{s}$			
					(2) $250 \mathrm{kbit} / \mathrm{s}$			
					(3) $125 \mathrm{kbit} / \mathrm{s}$			
					(4) $100 \mathrm{kbit} / \mathrm{s}$			
					(5) $50 \mathrm{kbit} / \mathrm{s}$			
					(6) $20 \mathrm{kbit/}$ /			
DeviceNet					bit/s			
			StATUS		read only(0) SELF TEST			
					(1) NO CONNECT			
					(2) CONNECTED			
					(4) DUP. MAC ERR   (5) BUS_OFF			
					(6) COM. ERROR   (7) WRONG ASMBLY			
4004	FB_P: I2	SC: 1	HL: 32767	LL: 0	D: 0	U: -		


FIELDBUS_PAR. 5										
Parameter of FIELDBUS-function block.   Fieldbus parameter with adapter specific function										
PROFIBUS (NPBA-02)			NO. OF DATA SETS							
PROFIBUS (NPBA-12)			NO. OF DATA SETS							
AC31			ADDR INDEX			(0) LOWER				
MODBUS										
			PARITY			(1) ODD				
						E 2 S				
						(3) NONE 1 STread only				
MODBUS+			Bad Msg							
CANopen			COMM PROFILE			(0) CSA 2.8/3.0				
			DRIV							
DeviceNet									NSPA	
			PROFILE SELECTION			(0) ABB DRIVES				
						(1) CSA $2.8 / 3.0$				
4005	FB_P: 12	SC: 1		HL: 32767	LL: 0	D: 0	U: -			
FIELDBUS_PAR. 6										
Parameter of FIELDBUS-function block. (S12/16).										
Fieldbus parameter with adapter specific function										
PROFIBUS (NPBA-02)			DATA SET OFFSET			0 to 255				
PROFIBUS (NPBA-12)			DATA SET INDEX			(0) FBA DSET 1				
AC31			DATA SETS			1; 2; 3				
MODBUS			GOOD MESSAGES			read only				
MODBUS+			GD Out 1			0 ... 96				
CANopen DeviceNet			CUT-OFF TIMEOUT   POLL OUTPUT SELECT			0 to 255				
			(0) BASIC SPEED   (1) TRANSPARENT							
					POLL OUTPUT SELECT					
			(2) PARAMETERS							
			DAT							
4006	FB_P: 12	SC: 1		HL: 32767	LL: 0	D: 0	U: -			




FIELDBUS_PAR. 13								
Parameter of FIELDBUS-function block. (S12/16).								
Fieldbus parameter with adapter specific function								
PROFIBUS not used								
AC31 not used								
MODBUS not used								
MODBUS+				0 ... 64				
CANopen			not used					
DeviceNet			ABB DRIVES STOP M					
			(1) RAMP STOP					
4013	FB_P: 12	SC: 1			HL: 32767	LL: 0	D: 0	U: -
FIELDBUS_PAR. 14								
Parameter of FIELDBUS-function block.								
Fieldbus parameter with adapter specific function								
PROFIBUSAC31			not used					
MODBUSMODBUS+			GD In3 Wrd	0 ... 31				
CANopen			not used					
DeviceNet			RAMP STOP LEVEL	0 ... 20000				
4014	FB_P: 12	SC: 1	HL: 32767	LL: 0	D: 0	U: -		
FIELDBUS_PAR. 15								
Parameter of FIELDBUS-function block. (S12/16).								
Fieldbus parameter with adapter specific functionPROFIBUS not used								
AC31			not used					
MODBUS			not used					
MODBUS+			not used					
CANopen			not used   NO. OF DATASETS					
Devic					$1 . . .20$			
4015	FB_P: I2	SC: 1	HL: 32767	LL: 0	D: 0	U: -		

## Group 101: ANALOG INPUTS

AITAC:OUT+   Signal of AITAC-function block.   Usually used for speed feedback when analog tacho is utilized						
10101	FB_O: 12	SC: SPEED	HL: -	LL: -	D:	U: rp
AITAC:OUT-   Signal of AITAC-function block. Usually used for speed feedback when analog tacho is utilized. Negated output.						
10102	FB_O: 12	SC: SPEED	HL: -	LL: -	D	U: rpm
AITAC:ERR   Signal of AITAC-function block.   (S4/16)   Status of AITAC-function block:   $0=$ NO FAULT   No fault   $1=1<4 \mathrm{~mA}$   AITAC_CONV_MODE $=2$ and $\mathrm{I}<4 \mathrm{~mA}$,   current signal out of range   2 = NO IOB1/IOB2/IOB3 No IOB3-board connected   3 = WRONG IOB Only IOB2 connected or   AITAC CONV_MODE $=1 \ldots 2$ and IOB3 not connected   4 = LOW VAL>HIGH VALAITAC LOW VALUE > AITAC HIGH VALUE.						
10103	FB_O: E2	SC:	HL: -	LL:	D:	U: -
Al1:OUT+   Signal of Al1-function block.   Usually used for speed reference input when analog reference is used.						
10104	FB_O: 12	SC: SPEED	HL:	LL:	D: -	U: rpm
Al1:OUT-   Signal of Al1-function block.   (S4/16)   Usually used for speed reference input when analog reference is used. Negated output.						
10105	FB_O: 12	SC: SPEED	HL: -	LL: -	D:	U: rpm
Al1:ERR   Signal of Al1-function block.   (S4/16)   Status of Al1-function block:   $0=$ NO FAULT   No fault   $1=\mathrm{l}<4 \mathrm{~mA}$   Al1_CONV_MODE $=2$ and $\mathrm{I}<4 \mathrm{~mA}$,   current signal out of range   2 = NO IOB1/IOB2/IOB3 No IOB3-board connected   3 = WRONG IOB Only IOB2 connected or   Al1_CONV_MODE = 3... 6 and IOB3 not connected   4 = LOW VAL>HIGH VALAI1_LOW_VALUE > AI1_HIGH_VALUE.						
10106	FB_O: E2	SC: -	HL: -	LL: -	D:	U:
Al2:OUT+   Signal of Al2-function block. Value read from Analog Input 2.						
10107	FB_O: 12	SC: -	HL: -	LL:	D:	U: -
Al2:OUT-   Signal of Al2-function block.   Value read from Analog Input 2. Negated output.						
10108	FB_O: 12	SC: -	HL: -	LL: -	D:	U:




DATASET1:OUT2						
Signal of DATASET1-function block   DATASET1:OUT2 is the first word of this telegram.						
10123	FB_O: 12	SC: -	HL: -	LL: -	D: -	U: -
DATASET1:OUT3   Signal of DATASET1-function block   DATASET1:OUT3 is the first word of this telegram.						
10124	FB_O: 12	SC: -	HL: -	LL: -	D: -	U: -
DATASET3:OUT1   Signal of DATASET3-function block   DATASET 3 is used for data transmission from the fieldbus master to the drive. When a fieldbus communication module is connected the DCS 500 can receive a 3 word telegram called DATASET3:OUT1...OUT3 from a fieldbus master. DATASET3:OUT1 is the first word of this telegram.						
10125	FB_O: 12	SC: -	HL: -	LL: -	D: -	U: -
DATASET3:OUT2   Signal of DATASET3-function block   DATASET3:OUT2 is the first word of this telegram.						
10126	FB_O: 12	SC: -	HL: -	LL: -	D: -	U: -
DATASET3:OUT3   Signal of DATASET3-function block   DATASET3:OUT3 is the first word of this telegram.						
10127	FB_O: 12	SC: -	HL: -	LL: -	D: -	U: -

## Group 103: BRAKE CONTROL

TREF_OUT						
Signal of BRAKE_CONTROL-function block   (S10/16 )						
Usually connected to input SPC. [BALREF] (2009) or SPC. [BAL2REF] (2011) of SPEED_CONTROL-block.						
10301	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
TREF_ENABLE						
Signal of BRAKE_CONTROL-function block						(S10/16)
Output which is active when the brake is opened or closed.						
Usually connected to input SPC.[BAL] (2008) or SPC.[BAL2] (2010) of SPEED_CONTROL-block:						
$0=$ TREF_OUT $=0$						
$-1=$ TREF_OUT is set by BRAKE_CONTROL-block.						
10302	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DECEL_CMND						
Signal of BRAKE_CONTROL-function block   (S10/16) Output which is active before the brake is closed:						
$0=$ normal speed reference from application						
$-1=$ command to set the speed reference to zero to stop the drive.						
10303	FB_O: B	SC: BO	HL: -	LL: -	D:	U:
LIFT_BRAKE						
Signal of BRAKE_CONTROL-function block   Output which is used to open the brake when the motor is able to produce torque:						
$0=$ brake is closed						
$-1=$ lift the brake.						
10304	FB_O: B	SC: BO	HL: -	LL: -	D: -	U
BRAKE_RUN						
Signal of BRAKE_CONTROL-function block						0/16 )
Output which is used to give a run-command to DRIVE LOGIC and reference selectors$0=$ no run-command						
$-1=$ run-command active.						
10305	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -

## Group 104: CURRENT CONTROL

ARM_ALPHA   Signal of CURRENT CONTROL-function block Firing angle.					( S7/16).	
10401	FB_O: 12	SC: 1	HL: -	LL: -	D: -	U: -
ARM_DIR     Signal of CURRENT CONTROL-function block     Identification of the bridge currently in use:     $0=$ SO BRIDGE     1 $=$ MOTOR BRIDGE    2 $=$ GENERATOR BRIDGE						
10402	FB_O: E2	SC: -	HL: -	LL: -	D: -	U: -
CURR_REF_IN_LIM   Signal of CURRENT CONTROL-function block   Status signal indicating that the current reference is in limit:   $0=$ current reference is not in limit   $-1=$ current reference is in limit.						
10403	FB_O: B	SC: BO	HL: -	LL:	D: -	U: -
CURR_DER_IN_LIM   Signal of CURRENT CONTROL-function block   Status signal indicating that the rate of change of the current reference is too high:   $0=$ current reference is not in limit   $-1=$ rate of change of current reference is in limit.						
10404	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
ARM_CURR_REF   Signal of CURRENT CONTROL-function block   ( S7/16 ).   Either current or torque reference is use depending on value of REF_TYPE_SEL (405).						
10405	FB_O: 12	SC: MC	HL: -	LL: -	D: -	U: A

## Group 105: CONVERTER, MOTOR

CONV_CURR_AC						
Signal of SETTINGS-function block. (S2/16)						
Actual current of the converter. Scaling based on signal I_CONV_A						
10501	FB_O: I2	SC: CCURR	HL: -	LL: -	D: -	U: A
ARM_CURR_ACTSignal of SETTINGS-function block.Actual current of the motor. Scaling based on parameter I_MOTN_A (502)						
10502	FB_O: I2	SC:MCURR	HL: -	LL: -	D: -	U: A
TORQUE_ACT   Signal of SETTINGS-function block.   Actual torque of the motor. $100 \%=$ nominal torque of motor.						
10503	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
U_NET_ACT   Signal of SETTINGS-function block.   (S2/16)   Actual voltage of the net supply. Scaling based on parameter U_SUPPLY (507)						
10504	FB_O: I2	SC: VOLT	HL: -	LL: -	D: -	U: V
U_ARM_ACT   Signal of SETTINGS-function block.   (S2/16)   Actual voltage of the motor. Scaling based on signal U_NET_DC_NOM						
10505	FB_O: 12	SC: VOLT	HL: -	LL: -	D: -	U: V
```EMF_ACT Signal of SETTINGS-function block. ( S2/16 ) Actual internal voltage (emf) of the motor. Scaling based on signal U_NET_DC_NOM```						
10506	FB_O: 12	SC: EMF	HL: -	LL: -	D: -	U: V
BRIDGE_TEMP Signal of SETTINGS-function block. Actual temperature of the heat sink.						
10507	FB_O: 12	SC: 1	HL: -	LL: -	D: -	U: C
U_NET_DC_NOM_V						
Signal of SETTINGS-function block.						S2/16)
Nominal value of full-rectified supply voltage. Scaling: U_NET_DC_NOM_V = 1,35 * U_SUPPLY (507).						
Notice that when P507 is changed, the internal values of the following net voltage signals will have different values, but the physical values shown in [V] on the pane or CMT/DCS 500 will keep its values: U_ARM_ACT, EMF_ACT.						
10508	FB_O: 12	SC: 1	HL: -	LL: -	D: -	U: V
I_CONV_A						
Signal of SETTINGS-function block. (S2/16)						
Converter rating plate value. Nominal current of the converter. At C1, C2 and C3 type converters this value is coded via resistors on the power interface board and will be read and then set by the system itself. At C4 type converters it has to be set via settings parameters (group 5) during commissioning.						
Notice that when the value of the settings parameters is changed, all converter current parameters and signals will have different values when they are shown in [A] in the panel or in CMT/DCS 500:						
ARM_CONT_CURR_LIM, ARM_CUR				MP,		
10509	FB_O: 12	SC: 1	HL: -	LL: -	D: -	U: A

I_TRIP_A								
Signal of SETTINGS-function block. (S2/16) Converter rating plate value. Overcurrent tripping limit of the converter. (see additional information at I_CONV_A)								
10510	FB_O: 12	SC: 1	HL: -	LL: -	D: -	U: A		
U_CONV_V								
Signal of SETTINGS-function block. Converter rating plate value. Nominal voltage of the converter. (see additional informatio at I_CONV_A)								
10511	FB_O: 12	SC: 1	HL: -	LL: -	D: -	U: V		
MAX_BR_TEMP								
Signal of SETTINGS-function block. (S2/16) Converter rating plate value.Tripping limit for converter heatsink overtemperature monitoring. (see additional information at I_CONV_A)								
10512	FB_O: 12	SC: 1	HL: -	LL: -	D: -	U: C		
CONV_TYPE								
Signal of SETTINGS-function block.					(S2/16)			
Converter rating plate value$1=$			(type of the converter): (C1)					
$2=$					(C2)			
			(C3)					
\qquad								
10513	FB_O: 12	SC: -	HL: -	LL: -	D: -	U:		
QUADR_TYPE								
Signal of SETTINGS-function block					(S2/16)			
Converter rating plate value			(number of quadrants): (one quadrant)					
$4=$ (four quadrant) (see additional information at I CONV A)								
10514	FB_O: 12	SC: -			HL: -	LL: -	D: -	U: -
LINE_FREQUENCY								
Signal of SETTINGS-function block. Actual line frequency.					(S2/16)			
10515	FB_O: 12	SC: -	HL: -	LL: -	D: -	U: 1/s		

Group 106: DATA LOGGER

DLOG_STATUS						
Signal of DATA_LOGGER-function block					(S14/16)	
Status of Data Logger:						
0 =			(logger is empty)			
$1=$			(logger is collecting data)			
$2=$			(a trigger has occurred)			
3 =			(logger has stopped after a trigger)			
$4=$			(logger has stopped after a stop command)			
			ger has	after	and	mman
10601	FB_O: 12	SC: -	HL: -	LL: -	D: -	U: -

Group 107: DIGITAL INPUTS

DI1:01						
Signal of DI1-function block (S3/16)						
State of Digital Input 1: $0=$ input voltage is zero						
-1 = input voltage is nominal.						
10701	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI1:O2						
Signal of DI1-function block						
Inverted state of Digital Input 1: $0=$ input voltage is nominal $-1=$ input voltage is zero.						
10702	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
D12:01						
Signal of DI2-function block (S3/16)						
State of Digital Input 2. See 10701.						
10703	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
D12:02						
Signal of DI2-function block Inverted state of Digital Input 2. See 10702.						
10704	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
D13:01						
Signal of DI3-function block State of Digital Input 3. See 10701.						
10705	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
D13:02						
Signal of DI3-function block (S3/16) Inverted state of Digital Input 3. See 10702.						
10706	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI4:01						
Signal of DI4-function blockState of Digital Input 4. See 10701. (S3/16)						
10707	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI4:02						
Signal of DI4-function block						
10708	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI5:01						
Signal of DI5-function block State of Digital Input 5. See 10701.						
10709	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI5:02						
Signal of DI5-function block (S3/16) Inverted state of Digital Input 5. See 10702.						
10710	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
D16:01						
Signal of DI6-function block					(S3/	
State	Digital Inp	6. See 1				
10711	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -

D16:02						
Signal of DI6-function block Inverted state of Digital Input 6. See 10702.						
10712	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI7:01 Signal of DI7-function block State of Digital Input 7. See 10701.						
10713			HL: -	LL: -	D: -	U: -
DI7:02 Signal of DI7-function block. Inverted state of Digital Input 7. See 10702.						
10714	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI8:01 Signal of DI8-function block State of Digital Input 8. See 10701.						
10715	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI8:O2 Signal of DI8-function block Inverted state of Digital Input 8. See 10702.						
10716	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI9:01 Signal of DI9-function block State of Digital Input 9. See 10701.						
10717	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
D19:02 Signal of DI9-function block (S11/16) Inverted state of Digital Input 9. See 10702.						
10718	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI10:01 Signal of DI10-function block (S11/16) State of Digital Input 10. See 10701.						
10719	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI10:02 Signal of DI10-function block (S11/16) Inverted state of Digital Input 10. See 10702.						
10720	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI11:01 Signal of DI11-function block (S11/16) State of Digital Input 11. See 10701.						
10721	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI11:O2 Signal of DI11-function block (S11/16) Inverted state of Digital Input 11. See 10702.						
10722	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI12:01 Signal of DI12-function block (S11/16) State of Digital Input 12. See 10701.						
10723	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
DI12:02 Signal of DI12-function block (S11/16) Inverted state of Digital Input 12. See 10702.						
10724	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -

DI13:01								
Signal of DI13-function block (S11/16)State of Digital Input 13. See 10701.								
10725	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -		
DI13:02								
Signal of DI13-function block (S11/16) Inverted state of Digital Input 13. See 10702.								
10726	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -		
D14:01								
Signal of DI14-function block					(S11/16)			
State of Digital Input 14. See 10701.								
10727	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -		
DI14:02								
Signal of DI14-function block (S11/16) Inverted state of Digital Input 14. See 10702.								
10728	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -		
DI15:01								
Signal of DI15-function block (S11/16) State of Digital Input 15. See 10701.								
10729	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -		
DI15:02								
Signal of DI15-function block					(S11/16)			
10730	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -		

Group 109: DRIVE LOGIC

RDY_ON						
Signal of DRIVE LOGIC-function block $0=$ drive is not ready for ON-command $-1=$ drive is ready for ON-command.						
10901	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
RDY_RUNNING						
Signal of DRIVE LOGIC-function block. $0=$ drive is not ready for RUN-command $-1=$ drive is ready for RUN-command.						
10902	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
```RUNNING Signal of DRIVE LOGIC-function block \(0=\) drive is not running \(-1=\) drive is running.```						
10903	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
FAULT						
Signal of DRIVE LOGIC-function block   $0=$ there is no active fault in the drive   $-1=$ there is an active fault in the drive.						
10904	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
Signal of DRIVE LOGIC-function block   $0=$ there is no active alarm in the drive   $-1=$ there is an active alarm in the drive.						
10905	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
LOCAL   Signal of DRIVE LOGIC-function block (S3/16) $0=$ the drive is in remote control (control from I/O or via communication) $-1=$ the drive is in local control (control from panel or CMT/DCS500).						
10906	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
EMESTOP_ACT						
Signal of DRIVE LOGIC-function block   $0=$ emergency stop function is not active   $-1=$ emergency stop function is active.						
10907	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
FAN_ON						
Signal of DRIVE LOGIC-function block   (S3/16 )						
$0=$ command to put all fans in off-state   $-1=$ command to put all fans in on-state.						
10908	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
FIELD_ON						
Signal of DRIVE LOGIC-function block ( S3/16)						
$0=$ command to put external field exciter in off-state						
10909	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -


MAIN_CONT_ON							
Signal of DRIVE LOGIC-function block   $0=$ command to put main contactor in off-state   $-1=$ command to put main contactor in on-state.							
TRIP_DC_BREAKER							
Signal of DRIVE LOGIC-function block   $0=$ no command to a dc breaker   $-1=$ command to open the dc breaker.							
10911	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -	
DYN_BRAKE_ON							
Signal of DRIVE LOGIC-function block $0=$ no command to a dynamic brake							
$-1=$ command to close the dynamic brake.							
10912	FB_O: B	$\mathrm{SC}: \mathrm{BO}$	HL: -	LL: -	D: -	U: -	
MOTOR_ACT							
Signal of DRIVE LOGIC-function block   $0=$ parameter set for motor 1 is active   $-1=$ parameter set for motor 2 is active.							
10913	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -	
AUTO-RECLOSING							
Signal of DRIVE LOGIC-function block   $0=$ Auto-reclosing function is not active							
$-1=$ Auto-reclosing function is active.							
10914	FB_O: B	$\mathrm{SC}: \mathrm{BO}$	HL: -	LL: -	D: -	U: -	
COMM_FAULT							
Signal of DRIVE LOGIC-function block (S3/16)							
$0=$ there is no active communication fault in the drive $-1=$ there is an active communication fault in the drive							
10915	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -	
RUN_DCF							
Signal of DCF FIELDMODE-function block (S2/16 \\| S21.232)							
Only active if DCF MODE = FEXLINK NODE1 or FEXLINK NODE2. Can be used to start and stop a DCF 500B, if this converter is connected via FEX-LINK (X16: to X16: connection) to a DCS 500B and no external start / stop command should be used to control the field exciter. In this case connect this signal to input ON/OFF (901) and RUN1 (902) of the DRIVE LOGIC. The signal definition is:							
$0=$ command to put DCF500B field exciter in off-state							
$-1=$ command to put DCF500B field exciter in on-state							
10916	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -	
RESET_DCF							
Signal of DCF FIELDMODE-function block (S2/16 \| S21.232)							
Only active if DCF MODE = FEXLINK NODE1 or FEXLINK NODE2. Can be used to reset faults at a DCF 500B, if this converter is connected via FEX-LINK (X16: to X16: connection) to a DCS 500B and no external RESET command should be used to reset faults at the field exciter. In this case connect this signal to input RESET (907) of the							
DRIVE LOGIC. The signal definition is:							
$0=$ no command to DCF500B field exciter							
$-1=$ command to reset DCF500B field exciter faults							
10917	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -	

## Group 110: EMF CONTROL

FLUX_REF1						
Signal of EMF CONTROL-function block   Flux reference after field weakening function.						
11001	FB_O: 12	SC: FLUX	HL: -	LL: -	D: -	U: \%
Signal of EMF CONTROL-function block Final flux reference.						
11002	FB_O: 12	SC: FLUX	HL: -	LL: -	D: -	U: \%
F CUR Signal Field	REF   EMF CO   rent refere	TROL-function ce.	block		( S8	
11003	FB_O: 12	SC: FLUX	HL: -	LL: -	D: -	U: \%

## Group 111: FAULTS, ALARMS

FAULT_WORD_1						
Fault status word where each bit represents one fault status.						
If fault is active, corresponding bit is set.						
B0 Auxil. undervoltage						
B1 Overcurrent						
B2 Armature overvoltage						
B3 Converter overtemp.						
B4 Earth fault						
B5 Motor 1 overtemp.						
B6 Motor 1 overload						
B7 I/O-Board not found						
B8 Motor 2 overtemp						
B9 Motor 2 overload						
B10 No BRAKE ack						
B11 Mains undervoltage						
B12 Mains overvoltage						
B13 Not in synchronism						
B14 Field ex. 1 overcurr						
	Field	1 come				
11101	S: PB	SC: -	HL: -	LL: -	D: -	U: -
FAULT_WORD_2						
Signal of FAULT HANDLING function block						(S16/16)
Fault status word where each bit represents one fault status. If fault is active, corresponding bit is set.						
B0 Arm. current ripple						
B1 Field ex. 2 overcurr						
B2 Field ex. 2 comerror						
B3 Phase sequence fault						
B4 No field ack.						
B5 Speed meas. fault						
B6 No ext. FAN ack.						
B7 No main cont. ack.						
B8 Type coding fault						
B9 Backup read fault						
B10 NoC FAN ack						
B11 Local \& disconnected						
B12 Field ex. 1 not OK						
B13 Field ex. 2 not OK						
B14 Motor stalled						
	Motor	erspeed				
11102	S: PB	SC: -	HL: -	LL: -	D: -	U: -



ALARM_WORD_2						
Signal of FAULT HANDLING function block   Alarm status word where each bit represents one alarm status.						
If alarm is active, corresponding bit is set.						
B0 Panel disconnected						
B1 Type code changed						
B2 Init values read, $\mathrm{S}^{\text {2 }}$						
B3 Param set 2 missing						
B4 Backup not allowed						
B5 Write backup alarm						
B6 Ext.Overvolt.Alarm						
B7 Macro change failed						
B8 Auto-reclosing						
B9 Arm. current ripple						
B10 reserved						
B11 reserved						
B12 reserved						
B13 reserved						
B14 reserved						
11105	S: PB	SC: -	HL: -	LL: -	D: -	U: -
ALARM_WORD_3						
Signal of FAULT HANDLING function block (S16/16)						
Alarm status word where each bit represents one alarm status. If alarm is active, corresponding bit is set.						
B0 reserved						
B1 reserved						
B2 reserved						
B3 reserved						
B4 reserved						
B5 reserved						
B6 reserved						
B7 reserved						
B8 reserved						
B9 reserved						
B10 reserved						
B11 reserved						
B12 reserved						
B13 reserved						
$\begin{array}{ll}\text { B14 } & \text { reserved } \\ \text { B15 } & \text { reserved }\end{array}$						
11106	S: PB	SC: -	HL: -	LL: -	D: -	U: -
LATEST_FAULT						
Signal of FAULT HANDLING function block   (S16/16)   Error code of the latest fault.						
11107	S: 12	SC: -	HL: -	LL: -	D: -	U: -
LATEST_ALARM						
Signal Error	FAULT	ANDLIN test alar	on block		( S1	
11108	S: 12	SC: -	HL: -	LL: -	D: -	U: -


OPERATING_HOURS						
Signal of FAULT HANDLING function block					(S16/16 )	
Operating hours in 0.1 h resolution.						
Counter is usually reset if auxiliary power of the control board is switched off for more than 8 hours and the contents of non-volatile memory is lost.						
11109	S: U4	SC: 0.1	HL: -	LL: -	D: -	U: -

## Group 112: MAINTENANCE

## COMMIS STAT

Signal of MAINTENANCE function.
Result from a drive function.
Gives feedback status information when the DRIVEMODE parameter was used to start a drive function.
COMMIS_STAT will tell if the function was successful:
$0=$ NOT ACTIVATED selected function successfully worked out
1 = RUN COMMAND ? see code 53
$2=$ FEXC SEL ? wrong FEX selection
3 = FEXC RDY OPER=0 FEX1 / 2 or DCF 503/4 not ready for operation
4 = FEXC OK=0 field supply not o.k.; see error message on the display of the converter
$5=$ FIELD ON=0 FEX1 / 2 or DCF 503/4 not switched on
6 = IF NOT IN 95-105\% field current not within 95\% ..... 105\%
7 = NOT O.K.AFTER 20s drive was not released by hardware within 20 s
8... 34 = reserved
$35=$ CANNOT AUTOTUNE cannot autotune the armature current controller
36...48 = reserved
$49=$ IF AT START ? Field current does not reach reference within 10s, when the selftuning is started

DRIVE_MODE (12.01) = 3, 5 or 6 (autotuning):
$50=$ OHMIC LOAD ? Ohmic load not determined.
51 = IACT FEEDBACK? Current feedback is less than current reference during measurement of armature resistance. Current limits are lower than the limit for continous current flow or lower than 20\%.
52 = CURRENT CURVE ? Bad current curve. Fuse blown,thyristor not firing or no motor load.
$53=$ RUN COMMAND ? Wrong starting conditions. The drive is running when the autotuning is started or run command is not given within 20 s after start of autotuning.
54 = TOO HIGH SPEED ? Too high speed during autotuning .Speed greater than $1 \%$ or EMF greater than $15 \%$.
$55=$ INDUCTANCE ? Inductance cannot be determined. Fuse blown, thyristor not firing or no motor load.
$56=$ CONT CURR LIM ? Limit for continous current flow cannot be determined.
57 = FIELD REMOVAL ? The field removal takes longer time than 10 s.
58 = STOP COMMAND ? Current contoller blocking or stop command appears during autotuning.
59 = MUST BE LOCAL Drive is not in local mode
60 = CANNOT AUTOTUNE cannot autotune the field current controller
61 = ILL START COND. illegal start condition for field autotuning

11201	S: E2	SC: -	HL: -	LL: -	D:	U: -

## BACKUPSTOREMODE

Signal of MAINTENANCE function.
BACKUPSTOREMODE is used to give commands to parameter handling function in the drive:
$0=$ NONE
1 = SAVE MOT1 SET Save motor set 1
2 = SAVE MOT2 SET Save motor set 2
3 = FACTORY SET VAL. Load factory values
4 = SELECT MOT1 SET Load motor set 1
5 = SELECT MOT2 SET Load motor set 2
6 = READ APPL BLOCKS Load application; if additional function blocks are activated and saved via SAVE MOTx SET and modified afterwards without saving the configuration before the last modification (the one directly after the last SAVE action) can be activated

While the command is executing the value of BACKUPSTOREMODE will show what is happening or the reason for error if the command fails:

7	$=$ ERASE ERROR		Error during erasing of parameter flash
8	$=$ ERASING...		Erasing the parameter flash
$9=$ PROGRAM ERROR		Error during programing of parameter flash	
$10=$ PROGRAMMING $\ldots$		Programing the parameter flash	
$11=$ WRONG FLASH TYPE		Verification error	
$12=$ READING...		Reading the parameter flash	
$13=$ READ ERROR		Error during reading of parameter flash	
$14=$ reserved			
$15=$ VERSION ERROR		Bad type of parameter flash	
$16=$ reserved			
$17=$ SIZE ERROR		Bad size of parameter flash	


11202	S: E2	SC: -	HL: 5	LL: 1	D: -	U: -
FEXC_STATUS						
Signal of MAINTENANCE function.						
Status of the field exciters 1 and 2:						
(internal signal; not shown on the panel; definition)						
B0 (FEX		_RDY	$0=\mathrm{n}$	for op	AC-v	sing)
B1 (FEX		OK	0 =	ostic f	powe	fex 1)
B2 (EX		RDY	0 =	for op	AC-v	sing)
B3 (EX		OK	0 = s	ostic f	powe	fex 2)
(A		EXC1	1 = m	eld OK)		
B5 (AC		EXC2	1 =	eld OK)		
B6 (FI		HEAT	1 = m	ating fu	ctive	
B7 (FI		$1 _R E V$	direc	e field	ard,	
B8 (AC		CSC_O	1 = 0	and ac	b se	ntrol)
B9 (AC		EXC	1 = m	d OK)		
B10 (FI		REF	1 = fi	nt ref	leas	
B11 (FI		(FIELD1_CURR_MIN_L) $1=$		field	bove	
B12 (FI		2_CUR	L) $1=$	field	oove	
11203	S: PB	SC: -	HL: -	LL: -	D: -	U: -


TC_STATUS										
Signal	MAINT	ANCE f								
Status of the torque control sequencing:										
(internal signal; not shown on the panel; definition)										
B0 (RD				for closing c	tracto					
B1 (MA		CONT		and to close	ontrac					
B2 (RDY		RUNNIN		for run comm						
B3 (RU		ING		and to relea	contr					
B4 (TC		PY_RE		for reference)						
B5 (TC		(TC_FIELD_CHANGE		$1=$ field revelsal is active)						
B6	(CONTINUOUS_CURR			ure current is	iscon					
11204	S: PB	SC: -	HL: -	LL: -	D: -	U: -				
BC										
Signal of MAINTENANCE function.										
Status of the current contoller. If the value of $B C$ is zero, everything is OK. Otherwise different bits of $B C$ will indicate the reason for blocking the current contoller:										
B0			overcurrent)							
B1			Freewheeling unit was fired)							
B2			field reversal)							
B3			supply system undervoltage)							
B4			12Puls only: fault 65 and 66 occurred)							
B5			12Puls only: signal via cable X18)							
B6			supply system overvoltage)							
B7			type code error)							
B8			suppression of controller at contoller change-over)							
B9			processor overload)							
			thyristor diagnostic running)							
B12			primary ( AC ) or secondary ( 48 Vac ) power failure) synchronization signal missing)							
			pulse firing section not in synchronism)							
			not released)							
11205	S: PB	SC: -	HL: -	LL: -	D: -	U: -				
SQUARE_WAVE										
Signal of MAINTENANCE function.										
Output of square wave generator. Used for tuning of controllers.										
11206	S: 12	SC: -	HL: -	LL: -	D:	U:				
TEST_REF										
Signal of MAINTENANCE function.   Test reference input for different drive functions which are activated with DRIVE_MODE parameter.										
11207	S: 12	SC: 1	HL: 3	LL: -32768	D: 0	U:				
TEST_RELEASE										
Signal of MAINTENANCE function..										
Release-command for a controller in manual tuning of current or EMF controller. In manual tuning first the reference is selected with the signal TEST_REF_SEL and then the controller is released by setting TEST_RELEASE to a value different than zero.										
11208	S: 12	SC: 1	HL: 1	LL: 0	D: 0	U: -				


ST REF SEL						
Signal of MAINTENANCE function.						
Test reference selection. In manual tuning the reference is selected with the signal TEST_REF_SEL:						
$0=$ ZERO $\quad$ reference is zero						
1 = POT1 reference is POT1_VALUE, 1204						
2 = POT2 refe			POT2	E, 1205		
3 = SQRW refe			SQU	AVE, 1		
4 = TEST $\quad$ ref			TEST	11207.		
11209	S: E2	SC: -	HL: 4	LL: 0	D: 0	U: -
FEXC1_CODE						
Signal of MAINTENANCE function.						
Type code from field exciter no. 1						
0000... 0307 FEX			-contro	gle		
0308...0819 FEX			-li-contr	uble		
0820... 1023 FEX			alf-cont	ingle		
10000 DC			CF501	502B		
11210	S: 12	SC: -	HL: -	LL: -	D: -	U: -
FEXC1_COM_STATUS						
Signal of MAINTENANCE function.						
Communication link timeout-status for field exciter no. FEXC1_COM_STATUS $=0=$ no time-out indication:						
B0 tim		ut when	aramet	cho for		
B1 tim		ut when	aramet	values re		
B2 tim		t when	paramet	cho for		
B3 tim		t when	paramet	values re		
B4 tim		ut when	actual va	value		
11211	S: PB	SC: -	HL: -	LL: -	D: -	U: -
FEXC1_COM_ERRORS						
Signal of MAINTENANCE function.						
Number of transmission errors in FEXC-communication link for field exciter no. 1.						
11212	S : 12	SC: -	HL: -	LL: -	D: -	U: -
FEXC2_CODE						
Signal of MAINTENANCE function.						
Type code from field exciter no. 2						
0308... 0819			Il-contr	uble		
0820... 1023			alf-cont	ingle		
10000			CF501	502B		
11213	S: 12	SC: -	HL: -	LL: -	D: -	U: -
FEXC2_COM_STATUS						
Signal of MAINTENANCE function.						
Communication link timeout-status for field exciter no. 2.						
FEXC2_COM_STATUS $=0=$ no time-out indication:						
B0 tim		ut when	arame	cho for		
B1 tim		t when	aramet	values re		
B2 tim		ut when	aramet	cho for		
B3 tim		t when	paramet	values re		
B4 tim		ut when	actual va	value		
11214	S: PB	SC: -	HL: -	LL: -	D: -	U: -


FEXC2_COM_ERRORS   Signal of MAINTENANCE function.   Number of transmission errors in FEXC-communication link for field exciter no. 2.						
11215	S: 12	SC: -	HL: -	LL: -	D: -	U: -
CMT_COM_ERRORS   Signal of MAINTENANCE function.   Number of transmission errors in DDCTool communication link.						
11216	S : 12	SC: -	HL: -	LL: -	D: -	U: -
CDI300_BAD_CHAR   Signal of MAINTENANCE function.   Number of transmission errors in panel communication link.						
11217	S: 12	SC: -	HL: -	LL: -	D: -	U: -
CNT_SW_VERSION Signal of MAINTENANCE function. DCS 500 converter firmware revision.						
11218	S: 12	SC: -	HL: -	LL: -	D: -	U: -
CNT_BOOT_SW_VERSION Signal of MAINTENANCE function. DCS 500 converter boot firmware revision.						
11219	S: 12	SC: -	HL: -	LL: -	D: -	U: -
FEXC1_SW_VERSION Signal of MAINTENANCE function. Field exciter no. 1 firmware revision.						
11220	S: 12	SC: -	HL: -	LL: -	D: -	U: -
FEXC2_SW_VERSION Signal of MAINTENANCE function. Field exciter no. 2 firmware revision.						
11221	S: 12	SC: -	HL: -	LL: -	D: -	U: -
PROGRAM_LOAD   Signal of MAINTENANCE function.   Calculated load of DCS 500 control program.   Calculation is started by setting DRIVE_MODE, 1201 = PROGRAM_LOAD.   The calculation will take about 20 seconds.						
11222	S: 12	SC: -	HL: -	LL: -	D: -	U: \%

## Group 113: MOTOR 1 FIELD

F1_CURR_REF						
Signal of MOTOR_1_FIELD- function block.   Field current reference for field exciter no. 1.						
11301	FB_O: 12	SC: FCURR	HL: -	LL: -	D: -	U: A
F1_CURR_ACT						
Signal of MOTOR_1_FIELD- function block. Actual field current from field exciter no. 1.						
11302	FB_O: 12	SC: FCURR	HL: -	LL: -	D: -	U: A
REF_DCF						
Signal of DCF FIELDMODE function block.   (S2/16 I S21.232)   Only activ if DCF MODE (1215) = FEXLINK NODE1 or FEXLINK NODE2   Field current reference via FEXLINK for DCF500 as field exciter no. 1 or no. 2						
11303	FB_O: 12	SC:MCURR	HL: -	LL: -	D: -	U: A

## Group 114: MOTOR 1 PROTECT.

MOT1_MEAS_TEMP						
Signal of MOTOR_1_PROTECTION- function block.   Measured temperature of motor 1 .						
The unit of the value depends on the selection of AI_CONV_MODE $(107,110)$ : $0=$ not selected						
$1,2=$ value scaled by AI_HIGH_VALUE $(108,111)$ and AI_LOW_VALUE $(109,112)$$3.5=$ unit $=$ degrees						
6,7 $=$ resistance value is ohms (but displayed in ${ }^{\circ} \mathrm{C}$ )						
11401	FB_O: 12	SC: -	HL: -	LL: -	D: -	U: C
MOT1_CALC_TEMP						
Signal of MOTOR_1_PROTECTION- function block. Output from thermal model for motor 1.					( S9/16 )	
11402	FB_O: 12	SC: -	HL: -	LL: -	D: -	U: \%

## Group 115: MOTOR 2 FIELD

F2_CURR_REF						
Signal of MOTOR_2_FIELD- function block. Field current reference for field exciter no. 2.						
11501	FB_O: I2	SC: FCURR	HL: -	LL: -	D: -	U: A
F2_CURR_ACT						
Signal of MOTOR_2_FIELD- function block. Actual field current from field exciter no. 2.						
11502	FB_O: I2	SC: FCURR	HL: -	LL: -	D: -	U: A

## Group 116: MOTOR 2 PROTECTION

MOT2_MEAS_TEMP						
Signal of MOTOR_2_PROTECTION- function block. Measured temperature of motor 2.					( S9/16 )	
The unit of the value depends on the selection of AI_CONV_MODE (107, 110): $0=$ not selected						
1,2 = value scaled by Al_HIGH_VALUE $(108,111)$ and AI_LOW_VALUE $(109,112)$						
$3.5=$ unit $=$ degrees						
6,7 = resistance value is ohms (but displayed in ${ }^{\circ} \mathrm{C}$ )						
11601	FB_O: 12	SC: -	HL: -	LL: -	D: -	U: C
MOT2_CALC_TEMP						
Signal of MOTOR_2_PROTECTION- function block. Output from thermal model for motor 2.						
11602	FB_O: 12	SC: -	HL: -	LL: -	D: -	U: \%

## Group 117: RAMP GENERATOR

RAMP:OUT						
Signal of RAMP GENERATOR- function block.   Speed reference after ramp function.						
11701	FB_O: 12	SC: SPEED	HL: -	LL: -	D: -	U: rpm
ACCELCOMP:OUT						
Signal of RAMP GENERATOR- function block.   (S4/16)   Acceleration compensation. Additional torque reference output calculated from the ACC_COMP.TRMIN (1719) parameter.						
11702	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
RAMP:SIGN						
Signal of RAMP GENERATOR- function block. Sign of speed reference after ramp function.						
11703	FB O: 12	SC: -	HL: -	LL: -	D: -	U: -

## Group 118: REFERENCE CHAIN

SPEED_REFERENCE						
Signal of the RAMP GENERATOR-function block.						
Speed reference after RAMP.[RES_IN] (1702) and before RAMP.[FOLLOW_IN] (1704) controlled switches. Both limits SPEEDMAX (1715) and SPEEDMIN (1716) are effective.						
11801	S: 12	SC: SPEED	HL: -	LL: -	D: -	U: rpm
REF_SUM:OUT						
Signal of REFSUM_2-function block.						
11802	FB_O: 12	SC: SPEED	HL:	LL:	D:	U: rpm
Signal of RAMP GENERATOR-function block..						
Local mode: Input value used as speed reference set by either panel or CMT-tool.						
Remote mode: Output used to display the speed reference after the LOCAL controlled switch.						
11803	S: 12	SC: SPEED	HL: 23000	LL: -23000	D: 0	U: rpm

## Group 119: REFERENCE SOURCES



## Group 120: SPEED CONTROLLER

ERR:OUT						
Signal of SPEED_ERROR-function block ( S5/16)						
Speed error which is usually connected to the speed controller input.						
12001	FB_O: 12	SC: SPEED	HL: -	LL:	D: -	U: rpm
ERR:OUT_OF_WIN						
Signal of SPEED_ERROR-function block ( S5/16)						
Indication which is active when speed error is out of error window ERR.WIN_SIZE (2004)						
12002	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
ERR:STEP_RESP						
Signal of SPEED_ERROR-function block   Speed error output which is used to show the behaviour of speed controller in step response test.						
12003	FB_O: 12	SC: SPEED	HL: -	LL:	D: -	U: rpm
SPC:OUT						
Signal of SPEED_CONTROL-function block   Torque reference output from speed controller.						
12004	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
SPC:IN_LIM						
Signal of SPEED_CONTROL-function block						/16)
Indication from speed controller showing that output is in limit.						
12005	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -

## Group 121: SPEED MEASUREMENT

SPEED_ACT_EMF						
Signal of SPEED_MEASUREMENT-function block   Actual speed calculated from armature voltage and motor parameters.						
12101	FB_O: 12	SC: SPEED	HL: -	LL: -	D: -	U: rpm
SPEED_ACT						
Signal of SPEED_MEASUREMENT-function block (S4/16)						
Actual speed after filtering which is connected to the SPEED_ERROR-function block.,						
12102	FB_O: 12	SC: SPEED	HL: -	LL: -	D: -	U: rpm
SPEED_ACT_FILT						
Signal of SPEED_MEASUREMENT-function block   Actual speed after second filtering stage.   Usually used for display purposes.						
12103	FB_O: 12	SC: SPEED	HL: -	LL: -	D: -	U: rpm
TACHO_PULSES						
Signal of SPEED_MEASUREMENT-function block   (S4/16)   Counter which is counting tacho pulses.						
12104	FB_O: U2	SC: -	HL: -	LL: -	D: -	U: -

## Group 122: SPEED MONITOR



## Group 123: TORQUE and CURRENT LIMITS

SPC_TORQMAX1						
Signal of TORQUE/CURRENT LIMITATION-function block. Positive torque limit for speed controller.					( S6/16 )	
12301	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
SPC_TORQMIN1   Signal of TORQUE/CURRENT LIMITATION-function block.   Negative torque limit for speed controller.					( S6/16 )	
12302	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
TREF_TORQMAX1   Signal of TORQUE/CURRENT LIMITATION-function block.   Positive torque limit for torque reference chain.					( S6/16 )	
12303	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
TREF_TORQMIN1   Signal of TORQUE/CURRENT LIMITATION-function block.   Negative torque limit for torque reference chain.					( S6/16 )	
12304	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
TORQMAX2   Signal of TORQUE/CURRENT LIMITATION-function block. Positive torque limit before external torque limitation.					( S6/16 )	
12305	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
TORQMIN2   Signal of TORQUE/CURRENT LIMITATION-function block. Negative torque limit before external torque limitation.					( S6/16 )	
12306	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
CURR_LIM_P   Signal of TORQUE/CURRENT LIMITATION-function block.   Positive current limit for current contoller.					( S6/16)	
12307	FB_O: 12	SC:MCURR	HL: -	LL: -	D: -	U: A
Signal of TORQUE/CURRENT LIMITATION-function block. Negative current limit for current contoller.					( S6/16 )	
12308	FB_O: 12	SC:MCURR	HL: -	LL: -	D: -	U: A

## Group 124: TORQUE REFERENCE CHAIN

SEL1:OUT						
Signal of TORQ_REF_SELECTION-function block Torque reference from torque reference chain.						
12401	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
SEL2:OUT   Signal of TORQ_REF_HANDLING-function block   Torque reference after torque reference selector .						
12402	FB_O: 12	SC: TORQ	HL: -	LL: -	D: -	U: \%
SEL2:TORQ/SPEED   Signal of TORQ_REF_HANDLING-function block   An output indicating which control mode is active:   $0=$ speed control is active   $-1=$ torque control is active.						
12403	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
SEL2:IN_LIM   Signal of TORQ_REF_HANDLING-function block   An output indicating that torque reference is in limit:   $0=$ reference between limits   $-1=$ reference has reached limit / is limited						
12404	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -

## Group 125: TASKS, CONSTANTS

CONSTANT 0								
Signal of CONSTANTS-function block Value which is always zero (FALSE).					( S2,S16/16 )			
12501	FB_O: 12	SC: -	HL: 0	LL: 0	D: 0	U: -		
CONSTANT -1								
Signal of CONSTANTS-function block Value which is always -1 (TRUE)					( S2,S16/16 )			
				Value which is always -1 (TRUE).				
Can be connected to function block inputs (FB_I: B) which use BI scaling.								
12502	FB_O: 12	SC: -	HL: -1	LL: -1	D: -1	U: -		
CONSTANT 1   Signal of CONSTANTS-function block Value which is always 1.								
					( S2,S16/16 )			
12503	FB_O: 12	SC: -	HL: 1	LL: 1	D: 1	U: -		
CONSTANT 2   Signal of CONSTANTS-function block Value which is always 2.								
					( S2,S16/16 )			
12504	FB_O: 12	SC: -	HL: 2	LL: 2	D: 2	U: -		
CONSTANT 10   Signal of CONSTANTS-function block Value which is always 10.								
					( S2,S16/16 )			
12505	FB_O: 12	SC: -	HL: 10	LL: 10	D: 10	U: -		
CONSTANT 100   Signal of CONSTANTS-function block Value which is always 100.								
					( S2;S16/16 )			
12506	FB_O: 12	SC: -	HL: 100	LL: 100	D: 100	U: -		
CONSTANT 1000								
Signal of CONSTANTS-function block Value which is always 1000.					( S2,S16/16 )			
12507	FB_O: 12	SC: -	HL: 1000	LL: 1000	D: 1000	U: -		
CONSTANT 31416								
Signal of CONSTANTS-function block Value which is always 31416.					( S2,S16/16 )			
12508	FB_O: 12	SC: -	HL: 31416	LL: 31416	D: 31416	U: -		
EMF: 100\%								
Signal of CONSTANTS-function block   ( S2,S16/16 )   Value which corresponds to nominal EMF $=3786$.								
12509	FB_O: 12	SC: -	HL: 3786	LL: 3786	D: 3786	U: -		
TORQ: 100\%								
Signal of CONSTANTS-function block   ( S2,S16/16 ) Value which corresponds to nominal positive torque $=4000$.								
12510	FB_O: 12	SC: -	HL: 4000	LL: 4000	D: 4000	U: -		
TORQ -100\%								
Signal of CONSTANTS-function block ( S2,S16/16)								
Value	hich corres	onds to	al negative t	ue $=-4000$.				
12511	FB_O: 12	SC: -	HL: -4000	LL: -4000	D: -4000	U: -		


CUR,FLX,VLT 100\%						
Signal of CONSTANTS-function block					( S2,S16/16 )	
Value which corresponds to nominal positive current, flux and voltage $=4095$.						
12512	FB_O: 12	SC:	HL: 4095	LL: 4095	D: 4095	U:
CUR,FLX,VLT -100\%						
Signal of CONSTANTS-function block ( S2,S16/16 )   Value which corresponds to nominal negative current, flux and voltage $=-4096$.						
12513	FB_O: 12	SC: -	HL: -4095	LL: -4095	D: -4096	U: -
SPEED: 100\%						
Signal of CONSTANTS-function block					( S2,S16/16)	
Value which corresponds to nominal positive speed $=20000$.						
12514	FB_O: 12	SC: -	HL: 20000	LL: 20000	D: 20000	U: -
SPEED: -100\%						
Signal of CONSTANTS-function block   Value which corresponds to nominal negative speed $=-20000$.						
12515	FB_O: 12	SC: -	HL: -20000	LL: -20000	D: -20000	U: -
SIG1(SPEED REF)						
Signal of FREE_SIGNALS-function block   ( S2,S16/16						
12516	FB_O: 12	SC: -	HL: 30000	LL: -30000	D: 0	U: -
SIG2(SPEED STEP)						
Signal of FREE_SIGNALS-function block ( S2,S16/16 )						
This block is containing signals which can be set by the CMT or panel.   Value which can be used to give a speed step. Before the drive will follow this step, it has to be connected to the speed step input ERR.[STEP] (2002).						
12517	FB_O: 12	SC: -	HL: 30000	LL: -30000	D: 0	U: -
SIG3(TORQ. REF A)						
Signal of FREE_SIGNALS-function blockThis block is containing signals which can be set by the CMT or panel.						
Value which can be used to give a torque reference. Before the drive will follow this reference, it has to be connected to the torque reference input SEL1.[TREF_A] (2401).						
12518	FB O: 12	SC: -	HL: 30000	LL: -30000	D: 0	U:
SIG4(TORQ. REF B)						
Signal of FREE_SIGNALS-function block   (S2,S16/16 )						
This block is containing signals which can be set by the CMT or panel.   Value which can be used to give a torque reference. Before the drive will follow this reference, it has to be connected to the torque reference input SEL [TREF B] (2404).						
12519	FB O: 12	SC: -	HL: 30000	LL: -30000	D: 0	
SIG5(TORQUE STEP)						
Signal of FREE_SIGNALS-function block (S2,S16/16)						
This block is containing signals which can be set by the CMT or panel. Value which can be used to give a torque step. Before the drive will follow this step, it has to be connected to the torque step input SEL2.[TORQ_STEP] (2409).						
12520	FB_O: 12	SC: -	HL: 30000	LL: -30000	D: 0	U: -


SIG6(LOAD SHARE						
Signal of FREE_SIGNALS-function block						
Value which can be used to give control load sharing in master/follower drives. Before the drive will use this value, it has to be connected to the load sharing input SEL1.[LOAD_SHARE] (2403).						
12521	FB_O: 12	SC: -	HL: 30000	LL: -30000	D: 4000	
SIG7(FLUX RE						
Signal of FREE_SIGNALS-function block   This block is containing signals which can be set by the CMT or panel.						
Value which can be used to give a flux reference. Before the drive will follow this reference, it has to be connected to the flux reference input [FLUX REF] (1002).						
12522	FB_O: 12	SC: -	HL: 30000	LL: -30000	D: 4095	U:-
SIG8(EMF REF)						
Signal of FREE_SIGNALS-function block ( S2,S16/16)						
Value which can be used to give an emf reference. Before the drive will follow this reference, it has to be connected to the emf reference input [EMF_REF] (1003).						
12523	FB_O: 12	SC: -	HL: 30000	LL: -30000	D: 378	U:
SIG9(FORCE FWD)						
Signal of FREE_SIGNALS-function block ( S2,S16/16)						
This block is containing signals which can be set by the CMT or panel.   Value which can be used to give a force command to field logic. Before the drive will follow this command, it has to be connected to the force forward-input [F1_FORCE_FWD]						
2524	FB_O: B	SC:	HL: 3000	00	D: 0	U: -
SIG10(FORCE REV)						
Signal of FREE_SIGNALS-function block (S2,S16/16)						
Value which can be used to give a force command to field logic. Before the drive will follow this command, it has to be connected to the force reverse-input [F1_FORCE_REV]						
12525	FB_O: B	SC:	HL: 30000	LL: - 30000	D:	U: -
SIG11(CURR. REF)						
Signal of FREE_SIGNALS-function block ( S2,S16/16)						
Value which can be used to give a current reference. Before the drive will follow this reference, it has to be connected to the current contoller input [CURR_REF] (402).						
12526	FB_O: 12	SC:	HL: 30000	LL: -30000	D: 0	U
SIG12(CURR. STEP)						
Signal of FREE_SIGNALS-function block ( $2, \mathrm{~S} 16 / 16$ )						
This block is containing signals which can be set by the CMT or panel.   Value which can be used to give a current step. Before the drive will follow this step, it   has to be connected to the current contoller step input [CURR STEP] (403)						
12527	FB_O: 12	SC: -	HL: 30000	LL: -30000	D: 0	U:

## Group 126: FUNCTION BLOCKS 1

## 12601-12699: Signals for application function blocks <br> See application function block data sheets.

## Group 127: FUNCTION BLOCKS 2

12701-12799: Signals for application function blocks
See application function block data sheets.

## Group 128: FUNCTION BLOCKS 3

12801-12899: Signals for application function blocks
See application function block data sheets.

## Group 129: FUNCTION BLOCKS 4

12901-12999: Signals for application function blocks
See application function block data sheets.

## Group 130: FUNCTION BLOCKS 5

13001-13013: Signals for application function blocks
See application function block data sheets.

## Group 135: DDCTool

STATUS_WORD										
Signal of DDCTool interface. DCS 500 drive status word:										
B1	RDY ON		$1=$ ready to close the contactor							
B2	RDY RUN		$1=$ ready to generate torque							
B3	RUNNING		$1=$ speed/torque control operating$1=$ A140 is activ							
B4	Auto-reclosing									
B5	FAU		1=indication of a fault in DCS500							
B6	ALARM		1=indication of an alarm in DCS500							
B7	reserved									
B8	reserved									
B9	reserved									
B10	reserved									
B11	reserved									
B12	reserved									
B13	reserved									
B14			1=A102 is not activ, [EME_STOP](906)="0"							
B15	Start inhibition		1=A101 is activ, [START_INHIBIT](908)="1"							
13501	S: PB	SC: -	HL: -	LL: -	D: -	U: -				
LTIME										
Signal of DDCTool interface. DCS 500 time counter.										
13502	S: 14	SC: -	HL: -	LL: -	D: -	U: -				
LDATE										
Signal of DDCTool interface. DCS 500 date counter.										
13503	S: 14	SC: -	HL: -	LL: -	D: -	U: -				

## Group 136: 12-PULSE-OPERATING

Curr						
Signal of 12-PULSE_LOGIC-function block						
Converter current of the Slave; evaluated signal from input IACT_SLAVE (3604); scaling as with the CONV_CUR_ACT (10501); operative only at that converter, which has got Master functionallity						
13601	FB_O: 12	SC: CCURR	HL:	LL	D:	U:
Arm.Curr.Slav						
Signal of 12-PULSE_LOGIC-function block   (S13/16 )   Motor current of the Slave; evaluated signal from input IACT_SLAVE (3604); scaling as with the CONV_CUR_ACT_A (10502); operative only at that converter, which has got Master functionallity						
13602	FB_O: 12	SC: MCURR	HL:	,		$\mathrm{U}: \mathrm{A}$
Conv.Curr.Bot						
(S13/16)						
Sum of converter currents (current of the Master and the Slave are added); evaluated signal from input IACT_SLAVE (3604) and CONV_CUR_ACT (10501); scaling: half of each current is added together, so that $100 \%$ corresponds to twice of the single conver current; operative only at Master						
13603	FB_O: 12	SC: CCUR	HL	LL: -		$\mathrm{U}: \mathrm{A}$
Arm.CURR.Both						
Signal of 12-PULSE_LOGIC-function block						
Sum of motor currents (current of the Master and the Slave are added); evaluated signa from inputs IACT_SLAVE (3604) and CONV_CUR_ACT_A (10502); scaling: half of eac current is added together, so that $100 \%$ corresponds to the real motor current; operativ only at Master.						
13604	FB_O	SC: MCURR	HL	LL: -	D: -	U: A
Curr.-Ref. 1						
(S13/16)Signal of 12-PULSE_LOGIC-function blockThe current reference in front of the current limiting block (ARM CURR LIM P (415),						
ARM_CURR_LIM_N (416)) at the CURRENT_CONTROL function block is outputted via this signal. This signal is calculated at the MASTER and the SLAVE.						
13605	FB_O: 12	SC: MCURR	HL:	LL:	D:	$\mathrm{U}: \mathrm{A}$
IREF1-Polarity						
Signal of 12-PULSE_LOGIC-function block   The sign of the current reference in front of the current limiting block (ARM_CURR_LIM_ (415), ARM_CURR_LIM_N (416)) at the CURRENT_CONTROL function block is outputted via this signal. This signal is calculated at the MASTER and the SLAVE. Logic level: " 0 " = positive current / forward bridge.						
13606	FB_O: B	SC: BO	HL:	LL:	D: -	U: -
IREF1-Pol.Master						
Signal of 12-PULSE_LOGIC-function block   The sign of the current reference in front of the current limiting block (ARM_CURR_LIM (415), ARM_CURR_LIM_N (416)) at the CURRENT_CONTROL function block of the MASTER is outputted via this signal at the converter having SLAVE functionallity. Logic level as before.						
13607	FB_O: B	SC: BO	HL: -	LL: -	D: -	U:


Curr.-Ref. 2						
Signal of 12-PULSE_LOGIC-function block   The current reference at the output of the current limiting block (ARM_CURR_LIM_P (415), ARM_CURR_LIM_N (416)) at the CURRENT_CONTROL function block is outputted via this signal. This signal is calculated at the MASTER and the SLAVE.						
13608	FB_O: I2	SC: MCURR	HL: -	LL: -	D: -	U: A
(ARM_CURR_LIM_P (415), ARM_CURR_LIM_N (416)) at the CURRENT_CONTROL function block is outputted via this signal. This signal is calculated at the MASTER and the SLAVE.   Logic level: "0" = positive current / forward bridge.						
13609	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
This signal is taken from the same point as signal IREF2-POLARITY and has therefor the same definition. Before it is available as a signal, it is transferred to the other unit and displayed there. So the converter with the MASTER function shows the logic level actually used at the converter with the SLAVE function and vice versa.						
13610	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
Bridge Signal This sig With lo	12-PULS   nal is a pic   c level $0=$	LOGIC-func re of signal 10 Bridge 1 is act	n block 02. It is e.			$\begin{aligned} & 3 / 16 \text { ) } \\ & \text { SLAVE } \end{aligned}$
13611	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
Signal of 12-PULSE_LOGIC-function block   This signal is operative only in the MASTER and indicates which bridge is used by the Slave.						
13612	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
Indicat.Revers.   Signal of 12-PULSE_LOGIC-function block (S13/16 )   This signal indicates, if a bridge reversal takes place.   Logic level: $-1=$ bridge reversal running.						
13613	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
Fault Reversion Signal of 12-PULSE_LOGIC-function block This signal triggers Error 65.						
13614	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
Fault Current   Signal of 12-PULSE_LOGIC-function block   (S13/16 )   This signal triggers Error 66.						
13615	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -

## Logik f.INHIBIT

Signal of 12-PULSE_LOGIC-function block
(S13/16)
This signal is generated by the 12 pulse switch-off logic. In case this signal is used at the 12 pulse data exchange the converters will try to switch off each other in the event of an error.
Based on the connection diagram this interconnection should be done:

- in case a 12 pulse system without redundancy is in use (see INHIBIT_LOGIC (3607)):
- connect this output to input START_INHIBIT (908) at both converters, Master and Follower
- $\quad$ in case a 12 pulse system with redundancy is in use (see BC_LOGIC (3616)):
- don't use this signal at both of the converters and keep START_INHIBIT (908) to default or application dependent

13616	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
Input X18:13						
The signal passed to this pointer is outputted at Plug Connector X18:13. It is operative in all modes. The interconnections recommended for the different 12 pulse modes are listed at groupe 36 .						
13617	FB_O: B	SC: BO	HL: -	LL: -	D: -	U: -
Input X18:14						
The signal passed to this pointer is outputted at Plug Connector X18:14. It is operative in all modes. The interconnections recommended for the different 12 pulse modes are listed at groupe 36 .						


13618	FB_O: B	SC: BO	HL:	LL:	D:	U:
Input X18:15   Signal of INPUT X18-function block   (S13/16)   The signal passed to this pointer is outputted at Plug Connector X18:15. It is operative in all modes. The interconnections recommended for the different 12 pulse modes are listed at groupe 36.						
13619	FB_O: B	SC: BO	HL	LL		
Input X18:16   Signal of INPUT X18-function block   (S13/16 )   The signal passed to this pointer is outputted at Plug Connector X18:16. It is operative in all modes. The interconnections recommended for the different 12 pulse modes are listed at groupe 36.						
13620	FB_O: B	SC: BO	HL: -	LL: -	D: -	U:
BC not Zero   Signal of 12-PULSE_LOGIC-function block   Signal is set when signal BC (112-05) is different to 0 (Bit 5 of BC is not taken into account!).						
13621	FB_O: B	SC: BO	HL: -	LL: -	D: -	U:
Reserved f.Commun   Signal of 12-PULSE_LOGIC-function block   This signal is already defined and used for future extensions.						
13622	FB_O: 12	SC: 1	HL: -	LL: -	D: -	U

## Group 138: FUNCTION WINDER BLOCKS

13801-13819: Function for application winder See winder data sheets.

## Group 139: FUNCTION BLOCKS 10

13901-13912: Parameter for application function blocks
See application function block data sheets.

## 1

12-Pulse Operating, 63, 115

## A

ACC_COMP.MODE (P17-18), 47 ACC_COMP.TRMIN (P17-19), 47 ACCEL1 (P17-08), 46
ACCEL2 (P17-11), 46
ACCELCOMP:OUT (S117-02), 102
ACK_CONV_FAN (P9-10), 27
ACK_MAIN_CONT (P9-12), 28
ACK_MOTOR_FAN (P9-11), 28
ACT_BRAKE (P3-04), 14
ACTUAL VALUE 1 (P12-10), 37
ACTUAL VALUE 2 (P12-11), 37
ADJ_REF1 (P36-15), 65
Al1:ERR (S101-06), 74
Al1:OUT- (S101-05), 74
Al1:OUT+ (S101-04), 74
Al1_CONV_MODE (P1-04), 8
Al1_HIGH_VALUE (P1-05), 8
Al1_LOW_VALUE (P1-06), 8
AI2:ERR (S101-09), 75
AI2:OUT- (S101-08), 74
Al2:OUT+ (S101-07), 74
AI2_CONV_MODE (P1-07), 9
Al2_HIGH_VALUE (P1-08), 9
AI2_LOW_VALUE (P1-09), 9
AI3:ERR (S101-12), 75
AI3:OUT- (S101-11), 75
Al3:OUT+ (S101-10), 75
Al3_CONV_MODE (P1-10), 9
AI3_HIGH_VALUE (P1-11), 9
Al3_LOW_VALUE (P1-12), 9
AI4:ERR (S101-15), 76
Al4:OUT- (S101-14), 75
Al4:OUT+ (S101-13), 75
AI4_CONV_MODE (P1-13), 10
AI4_HIGH_VALUE (P1-14), 10
AI4_LOW_VALUE (P1-15), 10
AI5:ERR (S101-18), 76
AI5:OUT- (S101-17), 76
Al5:OUT+ (S101-16), 76
AI5_CONV_MODE (P1-16), 10
AI5_HIGH_VALUE (P1-17, 10
Al5_LOW_VALUE (P1-18), 10
AI6:ERR (S101-21), 76
Al6:OUT- (S101-20), 76
Al6:OUT+ (S101-19), 76
AI6_CONV_MODE (P1-19), 10
Al6_HIGH_VALUE (P1-20), 10
Al6_LOW_VALUE (P1-21), 11
AITAC:ERR (S101-03), 74
AITAC:OUT- (S101-02), 74
AITAC:OUT+ (S101-01), 74
AITAC_CONV_MODE (P1-01), 8
AITAC_HIGH_VALUE (P1-02), 8
AITAC_LOW_VALUE (P1-03), 8

ALARM (S109-05), 86
ALARM_WORD_1 (S111-04), 90
ALARM_WORD_2 (S111-05), 91
ALARM_WORD_3 (S111-06), 91
Alarms, 33, 89
Analog Inputs, 8, 74
Analog Outputs, 12
AO1.[IN] (P2-01), 12
AO1_NOMINAL_V (P2-02), 12
AO1_NOMINAL_VAL (P2-04), 12
A01_OFFSET_V (P2-03), 12
AO2.[IN] (P2-05), 12
AO2_NOMINAL_V (P2-06), 12
AO2_NOMINAL_VAL (P2-08), 12
AO2_OFFSET_V (P2-07), 12
Arm.CURR.Both (S136-04), 115
Arm.Curr.Slave (S136-02), 115
ARM_ALPHA (S104-01), 79
ARM_ALPHA_LIM_MAX (P4-12), 16
ARM_ALPHA_LIM_MIN (P4-13), 16
ARM_CONT_CURR_LIM (P4-09), 15
ARM_CURR_ACT (S105-02), 80
ARM_CURR_CLAMP (P4-17), 16
ARM_CURR_LIM_N (P23-08), 57
ARM_CURR_LIM_N (P4-16), 16
ARM_CURR_LIM_P (P23-07), 57
ARM_CURR_LIM_P (P4-15), 16
ARM_CURR_PI_KP (P4-07), 15
ARM_CURR_PI_KP (P4-08), 15
ARM_CURR_REF (S104-05), 79
ARM_CURR_REF_SLOPE (P4-06), 15
ARM_DIR (S104-02), 79
ARM_L (P4-10), 16
ARM_OVERCURR_LEV (P5-12), 19
ARM_OVERVOLT_LEV (P5-11), 19
ARM_R (P4-11), 16
AUTO-RECLOSING (S109-14), 87

## B

BACKUPSTOREMODE (S112-02), 94
BC (S112-05), 95
BC not Zero (S136-21), 117
BC-Logic (P36-16), 66
BLOCK (P4-04), 15
BR_RELEASE (P3-02), 14
Brake Control, 14, 78
BRAKE_RUN (S103-05), 78
Bridge (S136-11), 116
Bridge of Slave (S136-12), 116
Bridge_logic (P36-09), 64
BRIDGE_TEMP (S105-07), 80

## c

CMT_COM_ERRORS (S112-16), 97
CMT_DCS500_ADDR (P12-02), 36
CNT_BOOT_SW_VERSION (S11219), 97

CNT_SW_VERSION (S112-18), 97

COAST_STOP (P9-05), 27
COMFAULT_MODE (P9-20), 29
COMFAULT_TIMEOUT (P9-21), 29
COMM_FAULT (S109-15), 87
COMMIS_STAT (S112-01), 93
CONST_REF.[ACT1] (P19-01), 49
CONST_REF.[ACT2] (P19-02), 49
CONST_REF.[ACT3] (P19-03), 49
CONST_REF.[ACT4] (P19-04), 49
CONST_REF.DEF (P19-05), 49
CONST_REF.REF1 (P19-06), 49
CONST_REF.REF2 (P19-07), 49
CONST_REF.REF3 (P19-08), 49
CONST_REF.REF4 (P19-09, 49
CONST_REF:ACT (S119-02), 104
CONST_REF:OUT (S119-01), 104
CONSTANT_0 (S125-01), 110
CONSTANT_-1 (S125-02), 110
CONSTANT_1 (S125-03), 110
CONSTANT_10 (S125-05), 110
CONSTANT_100 (S125-06), 110
CONSTANT_1000 (S125-07), 110
CONSTANT_2 (S125-04), 110
CONSTANT_31416 (S125-08), 110
Constants, 110
Conv.Curr.Both (S136-03), 115
Conv.Curr.Slave (S136-01), 115
CONV_CURR_ACT (S105-01), 80
CONV_TEMP_DELAY (P5-27), 22
CONV_TYPE (S105-13), 81
Converter, 18, 80
CUR,FLX,VLT_100\% (S125-12), 111
CUR,FLX,VLT_-100\% (S125-13), 111
CUR_RIPPLE_LIM (P4-21), 17
CUR_RIPPLE_MONIT (P4-20), 17
Curr.-Ref. 1 (S136-05), 115
Curr.-Ref. 2 (S136-08), 116
CURR_ACT_FILT_TC (P5-23), 21
CURR_DER_IN_LIM (S104-04), 79
CURR_LIM_N (S123-08), 108
CURR_LIM_P (S123-07), 108
CURR_REF (P4-02), 15
CURR_REF_IN_LIM (S104-03), 79
CURR_STEP] (P4-03), 15
CURRENT CONTROL, 15, 79
CURRENT_RISE_MAX (P4-18), 16

## D

Data Logger, 23, 82
DATASET1.[OUT1] (S101-22), 76
DATASET1.[OUT2] (S101-23), 77
DATASET1.[OUT3] (S101-24), 77
DATASET2.[IN1] (P2-09), 12
DATASET2.[IN2] (P2-10), 12
DATASET2.[IN3] (P2-11), 12
DATASET3.[OUT1] (S101-25), 77
DATASET3.[OUT2] (S101-26), 77
DATASET3.[OUT3] (S101-27), 77
DATASET4.[IN1(P2-12), 13
DATASET4.[IN2] (P2-13), 13
DATASET4.[IN3] (P2-14), 13

DCF MODE (P12-15), 38
DDCTool, 114
DECEL_CMND (S103-03), 78
DECEL1 (P17-09), 46 DECEL2 (P17-12), 47 DI/OVP (P12-16), 38 DI1:O1 (S107-01), 83 DI1:O2 (S107-02), 83 DI10:01 (S107-19), 84 DI10:02 (S107-20), 84 DI11:01 (S107-21), 84 DI11:O2 (S107-22), 84 DI12:01 (S107-23), 84 DI12:O2 (S107-24), 84 DI13:01 (S107-25), 85 DI13:02 (S107-26), 85 DI14:01 (S107-27), 85 DI14:02 (S107-28), 85 DI15:01 (S107-29), 85 DI15:02 (S107-30), 85 DI2:01 (S107-03), 83 DI2:02 (S107-04), 83 DI3:01 (S107-05), 83 DI3:02 (S107-06), 83 DI4:01 (S107-07), 83 DI4:02 (S107-08), 83 DI5:01 (S107-09), 83 DI5:O2 (S107-10), 83 DI6:01 (S107-11), 83 DI6:02 (S107-12), 84 DI7:01 (S107-13), 84 DI7:02 (S107-14), 84 DI8:01 (S107-15), 84 DI8:02 (S107-16), 84 DI9:01 (S107-17), 84 DI9:02 (S107-18), 84 DIFF_CURR_DELAY (P36-06), 64 DIFF_CURRENT (P36-05), 63 Digital Inputs, 83 Digital Outputs, 25 DISABLE_LOCAL (P9-09), 27 DLOG.[IN1] (P6-01), 23 DLOG.[IN2] (P6-02), 23 DLOG.[IN3] (P6-03), 23 DLOG.[IN4] (P6-04), 23 DLOG.[IN5] (P6-05), 23 DLOG.[IN6] (P6-06), 23 DLOG.[RESTART] (P6-13), 24 DLOG.[STOP] (P6-12), 24 DLOG.[TRIG] (P6-11), 24 DLOG.SAMPL_INT (P6-10), 23 DLOG.TRIGG_COND (P6-07), 23 DLOG.TRIGG_DELAY (P6-09), 23 DLOG.TRIGG_VALUE (P6-08), 23 DLOG_STATUS (S106-01), 82 D01.[IN] (P8-01), 25 DO1.[INV_IN] (P8-02), 25 DO2.[IN] (P8-03), 25 DO2.[INV_IN] (P8-04), 25 DO3.[IN] (P8-05), 25 DO3.[INV_IN] (P8-06), 25 DO4.[IN] (P8-07), 25 DO4.[INV_IN] (P8-08), 25 DO5.[IN] (P8-09), 25

DO5.[INV_IN] (P8-10), 25
DO6.[IN] (P8-11), 25
DO6.[INV_IN] (P8-12), 25
DO7.[IN] (P8-13), 26
DO7.[INV_IN] (P8-14), 26
DO8.[IN] (P8-15), 26
DO8.[INV_IN] (P8-16), 26
Drive Logic, 27, 86
DRIVE_ID (P12-03), 36
DRIVEMODE (P12-01), 36
DXN (P4-14), 16
DYN_BRAKE_ON (S109-12), 87

## E

EARTH.CURR_SEL (P5-14), 20
EARTH.FLT_DLY (P5-16), 20
EARTH.FLT_LEV (P5-15), 20 EME_STOP (P9-06), 27 EME_STOP_MODE (P9-17), 28 EMESTOP_ACT (S109-07), 86 EMESTOP_BRAKE (P3-08), 14 EMESTOP_RAMP (P17-14), 47 EMF Control, 30, 88 EMF_100\% (S125-09), 110 EMF_ACT (S105-06), 80 EMF_FILT_TC (P5-13), 20 EMF_KI (P10-08), 31 EMF_KP (P10-07), 30 EMF_REF (P10-03), 30 EMF_REF_SEL (P10-05), 30 EMF_REG_LIM_N (P10-10), 31 EMF_REG_LIM_P (P10-09), 31 EMF_REL_LEV (P10-11), 31 ERR. [SPEED_ACT] (P20-21), 53 ERR.[IN] (P20-01), 52 ERR.[STEP] (P20-02), 52 ERR.[WIN_MODE] (P20-03), 52 ERR.FRS (P20-05), 52 ERR.WIN_SIZE (P20-04), 52 ERR:OUT (S120-01), 105 ERR:OUT_OF_WIN (S120-02), 105 ERR:STEP_RESP (S120-03), 105

## F

F_CURR_REF (S110-03), 88
F1_ACK (P13-04), 39
F1_CURR_ACT (S113-02), 98
F1_CURR_GT_MIN_L (P13-05), 39
F1_CURR_MIN_TD (P13-21), 41
F1_CURR_REF (S113-01), 98
F1_CURR_TC (P13-07), 39
F1_FORCE_FWD (P13-02), 39
F1_FORCE_REV (P13-03), 39
F1_KI (P13-09), 39
F1_KP (P13-08), 39
F1_OVERCURR_L (P13-06), 39
F1_RED.REF (P13-14), 40
F1_RED.SEL (P13-13), 40
F1_REF (P13-01), 39
F1_U_AC_DIFF_MAX (P13-10), 39
F1_U_LIM_N (P13-11), 40

F1_U_LIM_P (P13-12), 40
F2_CURR_ACT (S115-02), 100
F2_CURR_GT_MIN_L (P15-02), 43
F2_CURR_REF (S115-01), 100
F2_CURR_TC (P15-04), 43
F2_KI (P15-06), 43
F2_KP (P15-05), 43
F2_OVERCURR_L (P15-03), 43
F2_RED.REF (P15-11), 44
F2_RED.SEL (P15-10), 43
F2_REF (P15-01), 43
F2_U_AC_DIFF_MAX (P15-07), 43
F2_U_LIM_N (P15-08), 43
F2_U_LIM_P (P15-09), 43
FAN_ON (S109-08), 86
FAULT (S109-04), 86
Fault Current (S136-15), 116
Fault Revision (S136-14), 116
FAULT_WORD_1 (S111-01), 89
FAULT_WORD_2 (S111-02), 89
FAULT_WORD_3 (S111-03), 90
Faults, 33, 89
FB Execution, 61
FB_APPL_ENABLE (P25-04), 61
FB_TASK_LOCK (P25-05), 61
FEXC_SEL (P5-05), 19
FEXC_STATUS (S112-03), 94
FEXC1_CODE (S112-10), 96
FEXC1_COM_ERRORS (S112-12), 96
FEXC1_COM_STATUS (S112-11), 96
FEXC1_SW_VERSION (S112-20), 97
FEXC2_CODE (S112-13), 96
FEXC2_COM_ERRORS (S112-15), 97
FEXC2_COM_STATUS (S112-14), 96
FEXC2_SW_VERSION (S112-21), 97
FIELD_CONST_1 (P10-13), 31
FIELD_CONST_2 (P10-14), 31
FIELD_CONST_3 (P10-15), 31
FIELD_HEAT_SEL (P9-14), 28
FIELD_MODE (P10-01), 30
FIELD_ON (S109-09), 86
FIELD_WEAK_DELAY (P10-18), 32
FIELD_WEAK_POINT (P10-12), 31
FIELDBUS NODE ADDR (P12-13), 37
Fieldbus Parameter, 67
FIELDBUS_PAR. 1 (P40-01), 67
FIELDBUS_PAR. 10 (P40-10), 72
FIELDBUS_PAR. 11 (P40-11), 72
FIELDBUS_PAR. 12 (P40-12), 72
FIELDBUS_PAR. 13 (P40-13), 73
FIELDBUS_PAR. 14 (P40-14), 73
FIELDBUS_PAR. 15 (P40-15), 73
FIELDBUS_PAR. 2 (P40-02), 68
FIELDBUS_PAR. 3 (P40-03), 68
FIELDBUS_PAR. 4 (P40-04), 69
FIELDBUS_PAR. 5 (P40-05), 70
FIELDBUS_PAR. 6 (P40-06), 70
FIELDBUS_PAR. 7 (P40-07), 71
FIELDBUS_PAR. 8 (P40-08), 71
FIELDBUS_PAR. 9 (P40-09), 72
FLUX_REF (P10-02), 30
FLUX_REF_SEL (P10-04), 30

FLUX_REF_SUM (S110-02), 88
FLUX_REF1 (S110-01), 88
FREV_DELAY (P36-03), 63
Function Blocks 1, 62, 113
Function Blocks 10, 66, 118
Function Blocks 2, 62, 113
Function Blocks 3, 62, 113
Function Blocks 4, 62, 113
Function Blocks 5, 62, 113
Function Blocks 6, 62
Function Blocks 7, 62
Function Blocks 8, 62
Function Blocks 9, 62
Function Blocks Winder, 66
Function Winder Blocks, 118

## G

GEAR.START_TORQ (P23-15), 59 GEAR.TORQ_RAMP(P23-17), 59 GEAR.TORQ_TIME(P23-16), 59 GENER.EMF_REF (P10-16), 31 GENER.WEAK_POINT (P10-17), 32

## H

HOLD_REF (P3-01), 14 HOLD_TORQ (P3-07), 14

## I

I_CONV_A (S105-09), 80
I_MOT1_FIELDN_A] (P5-03), 18
I_MOT2_FIELDN_A] (P5-04), 18
I_MOTN_A (P5-02), 18
I_TRIP_A (S105-10), 81
IACT_SLAVE (P36-04), 63
Indicat.Revers. (S136-13), 116
INHIB_Logic (P36-07), 64
IREFO_Logic (P36-08), 64
IREF1-Pol.Master (S136-07), 115
IREF1-Polarity (S136-06), 115
IREF2-Pol.Broth. (S136-10), 116
IREF2-Polarity (S136-09), 116

## K

KLIXON_IN (P14-04), 42

## $L$

LANGUAGE (P5-22), 21
LATEST_ALARM (S111-08), 91
LATEST_FAULT (S111-07), 91
LDATE (S135-03), 114
LIFT_BRAKE (S103-04), 78
LINE_FREQUENCY (S105-15), 81
LOCAL (S109-06), 86
LOCAL_EMF_REF (P10-06), 30
LOCAL_SPEED_REF (S118-03), 103
Logik f.INHIBIT (S136-16), 117
LTIME (S135-02), 114

## M

MACRO_SELECT(P12-14), 37
MAIN_CONT_MODE (P9-15), 28
MAIN_CONT_ON (S109-10), 87
Maintenance, 36, 93
MAX_BR_TEMP (S105-12), 81
MAX_CURR_LIM_N1 (P23-10), 58
MAX_CURR_LIM_N2 (P23-11), 58
MAX_CURR_LIM_N3 (P23-12), 58
MAX_CURR_LIM_N4 (P23-13), 58
MAX_CURR_LIM_N5 (P23-14), 58
MAX_CURR_LIM_SPEED (P23-09), 58
MIN_SP_IND (P3-03), 14
MIN_SPEED (S122-01), 107
MIN_SPEED_L (P22-01), 55
MODEL1.ALARM_L (P14-07), 42
MODEL1.CURR (P14-06), 42
MODEL1.SEL (P14-05), 42
MODEL1.TC (P14-09), 42
MODEL1.TRIP_L (P14-08), 42
MODEL2.ALARM_L (P16-06), 45
MODEL2.CURR (P16-05), 45 MODEL2.SEL (P16-04), 45 MODEL2.TC (P16-08), 45 MODEL2.TRIP_L (P16-07), 45
MON.EMF_V (P22-10), 56
MON.MEAS_LEV (P22-09), 55
MOT1.[TEMP_IN] (P14-01), 42
MOT1.TEMP_ALARM_L (P14-02), 42
MOT1.TEMP_FAULT_L (P14-03), 42
MOT1_CALC_TEMP (S114-02), 99
MOT1_MEAS_TEMP (S114-01), 99
MOT2.[TEMP_IN] (P16-01), 45
MOT2.TEMP_ALARM_L (P16-02), 45
MOT2.TEMP_FAULT_L (P16-03), 45
MOT2_CALC_TEMP (S116-02), 101
MOT2_MEAS_TEMP (S116-01), 101
Motor, 18, 80
Motor 1 Field, 39, 98
Motor 1 Protection, 42, 99
Motor 2 Field, 43, 100
Motor 2 Protection, 45, 101
MOTOR_ACT (S109-13), 87
MOTOR2 (P9-13), 28

## 0

OFFSET_UDC (P5-26), 21 ON/OFF (P9-01), 27 OPERATING_HOURS (S111-09), 92 OPTI.REF_GAIN (P13-15), 40 OPTI.REF_MIN_L (P13-16), 40 OPTI.REF_MIN_TD (P13-17), 40 OVERSPEED (S122-04), 107 OVERSPEEDLIMIT (P22-04), 55 OVP_SELECT (P12-17), 38

## P

PANEL_BAD_CHAR (S112-17), 97
PANEL_DISC_MODE (P9-18), 29

PERIOD_BTW_POT1/2 (P12-06), 36
PHASE_SEQ_CW (P5-06), 19
PLL_DEV_LIM (P5-28), 22
POT1_VALUE (P12-04), 36
POT2_VALUE (P12-05), 36
PROGRAM_LOAD (S112-22), 97
PWR_DOWN_TIME (P5-10), 19
PWR_LOSS_MODE (P9-19), 29

## Q

QUADR_TYPE (S105-14), 81

## R

Ramp Generator, 46, 102
RAMP.[FOLL_ACT] (P17-05), 46
RAMP.[FOLLOW_IN] (P17-04), 46
RAMP.[HOLD] (P17-03), 46
RAMP.[IN] (P17-01), 46
RAMP.[RES_IN] (P17-02), 46
RAMP.[RES_OUT] (P17-06), 46
RAMP.[SPEED_SET] (P17-20), 47
RAMP.[T1/T2] (P17-07), 46
RAMP:OUT (S117-01), 102
RAMP:SIGN (S117-03), 102
RDY_ON (S109-01), 86
RDY_RUNNING (S109-02), 86
REF_SEL:OUT (S119-03), 104
REF_SUM.[IN1] (P18-01), 48
REF_SUM.[IN2] (P18-02), 48
REF_SUM:OUT (S118-02, 103
REF_TYPE_SEL (P4-05), 15
Reference Chain, 48, 103
Reference Sources, 49, 104
REFSEL.[ADD] (P19-16), 50
REFSEL.[IN1] (P19-10), 49
REFSEL.[IN2] (P19-12), 50
REFSEL.[IN3] (P19-14), 50
REFSEL.[REV] (P19-17), 50
REFSEL.[SEL1] (P19-11), 49
REFSEL.[SEL2] (P19-13), 50
REFSEL.[SEL3] (P19-15), 50
Reserved f.Commun (S136-22), 117
RESET (P9-07), 27
RESET_DCF (P109-17), 87
REV.FLUX_TD (P13-20), 41
REV.REF_HYST (P13-19), 41
REV.REV_HYST (P13-18), 40
REV_DELAY (P36-01), 63
REV_GAP (P36-02), 63
Reverse.Logic (P36-10), 64
RUN_DCF (P109-16), 87
RUN1 (P9-02), 27
RUN2 (P9-03), 27
RUN3 (P9-04), 27
RUNNING (S109-03), 86

## S

SEL1.[LOAD_SHARE] (P24-03), 60 SEL1.[TREF_A] (P24-01), 60

SEL1.[TREF_B] (P24-04), 60 SEL1.TREF_A_FTC (P24-02), 60 SEL1.TREF_B_SLOPE (P24-05), 60
SEL1:OUT (S124-01), 109
SEL2.[TORQ_STEP] (P24-09), 60
SEL2.[TREF_EXT] (P24-08), 60
SEL2.[TREF_SPC] (P24-07), 60
SEL2.TREF_SEL (P24-06), 60
SEL2:IN_LIM (S124-04), 109
SEL2:OUT (S124-02), 109
SEL2:TORQ/SPEED (S124-03), 109
SELECT_OPER_SYST (P12-09), 37
SET_CONV_TYPE (P5-20), 21
SET_I_CONV_A (P5-17), 20
SET_MAX_BR_TEMP (P5-19), 20
SET_QUADR_TYPE (P5-21), 21
SET_U_CONV_V (P5-18), 20
SIG1(SPEED_REF) (S125-16), 111
SIG10(FORCE_REV) (S125-25), 112
SIG11(CURRENT_REF) (S125-26), 112
SIG12(CURRENT_STEP) (S125-27), 112
SIG2(SPEED_STEP) (S125-17), 111
SIG3(TORQUE_REF_A) (S125-18), 111
SIG4(TORQUE_REF_B) (S125-19), 111
SIG5(TORQUE_STEP) (S125-20), 111
SIG6(LOAD_SHARE) (S125-21), 112
SIG7(FLUX_REF) (S125-22), 112
SIG8(EMF_REF) (S125-23), 112
SIG9(FORCE_FWD) (S125-24), 112
SMOOTH1 (P17-10), 46
SMOOTH2 (P17-13), 47
SOFT_POT:ACT (S119-05), 104
SOFT_POT:OUT (S119-04), 104
SOFTPOT.[DECR] (P19-19), 50
SOFTPOT.[ENABLE] (P19-23), 51
SOFTPOT.[FOLLOW] (P19-20), 50
SOFTPOT.[INCR] (P19-18), 50
SOFTPOT.OHL (P19-21), 50
SOFTPOT.OLL (P19-22), 50
SPC.[BAL] (P20-08), 52
SPC.[BAL2] (P20-10), 52
SPC.[BAL2REF] (P20-11), 52
SPC.[BALREF] (P20-09), 52
SPC.[HOLD] (P20-12), 53
SPC.[IN] (P20-06), 52
SPC.[RINT] (P20-07), 52
SPC.DROOPING (P20-13), 53
SPC.KI (P20-18), 53
SPC.KP (P20-14), 53
SPC.KPSMIN (P20-15), 53
SPC.KPSPOINT (P20-16), 53
SPC.KPSWEAKFILT (P20-17), 53
SPC.TD (P20-19), 53
SPC.TF (P20-20), 53
SPC:IN_LIM (S120-05), 105
SPC:OUT (S120-04), 105
SPC_TORQ_MAX (P23-01), 57

SPC_TORQ_MIN (P23-02), 57
SPC_TORQMAX1 (S123-01), 108 SPC_TORQMIN1 (S123-02), 108
Speed Controller, 52, 105
Speed Measurement, 54, 106
Speed Monitor, 55, 107
SPEED_100\% (S125-14), 111
SPEED_-100\% (S125-15), 111 SPEED_ACT (S121-02), 106 SPEED_ACT_EMF (S121-01), 106
SPEED_ACT_FILT (S121-03), 106
SPEED_ACT_FILT_FTR (P21-05), 54
SPEED_ACT_FTR (P21-04), 54
SPEED_GT_L1 (S122-02), 107
SPEED_GT_L2 (S122-03), 107
SPEED_L1 (P22-02), 55
SPEED_L2 (P22-03), 55
SPEED_MEAS_MODE (P21-02), 54
SPEED_REFERENCE (S118-01, 103
SPEED_SCALING (P21-03), 54
SPEEDMAX (P17-15), 47
SPEEDMIN (P17-16), 47
SQUARE_WAVE (S112-06), 95
STALL.SEL (P22-05), 55
STALL.SPEED (P22-06), 55
STALL.TIME (P22-08), 55
STALL.TORQUE (P22-07), 55
START_DELAY (P3-05), 14
START_INHIBIT (P9-08), 27
STARTSEL (P17-17), 47
STATUS_WORD (S135-01), 114
STOP_DELAY (P3-06), 14
STOP_MODE (P9-16), 28

## T

TACHO_PULSES (S121-04), 106
TACHOPULS_NR (P21-01), 54
TASK1_EXEC_ORDER (P25-01), 61
TASK2_EXEC_ORDER (P25-02), 61
TASK3_EXEC_ORDER (P25-03), 61
TC_STATUS (S112-04), 95
TEST_REF (S112-07), 95
TEST_REF_SEL (S112-09), 96
TEST_RELEASE (S112-08), 95
TORQ_100\% (S125-10), 110
TORQ_-100\% (S125-11), 110
TORQ_MAX (P23-05), 57
TORQ_MIN (P23-06), 57
TORQ_REF (P4-01), 15
TORQMAX2 (S123-05), 108
TORQMIN2 (S123-06), 108
Torque and Current Limits, 57, 108
Torque Reference Chain, 60, 109
TORQUE_ACT (S105-03), 80
TREF_ENABLE (S103-02), 78
TREF_OUT (S103-01), 78
TREF_TORQ_MAX (P23-03), 57
TREF_TORQ_MIN (P23-04), 57
TREF_TORQMAX1 (S123-03), 108
TREF_TORQMIN1 (S123-04), 108

TRIP_DC_BREAKER (S109-11), 87

## U

U_ARM_ACT (S105-05), 7, 80
U_CONV_V (S105-11), 81
U_MOTN_V (P5-01), 6, 18
U_NET_ACT (S105-04), 80 U_NET_DC_NOM_V (S105-08), 80 U_NET_MIN1 (P5-08), 19 U_NET_MIN2 (P5-09), 19 U_SUPPLY (P5-07), 19 UNI_FILT_TC (P5-25), 21 USER_EVENT1.[IN] (P11-01), 33 USER_EVENT1.DLY (P11-04), 33 USER_EVENT1.TEXT (P11-03), 33 USER_EVENT1.TYPE (P11-02), 33 USER_EVENT2.[IN] (P11-05), 33 USER_EVENT2.DLY (P11-08), 33 USER_EVENT2.TEXT (P11-07), 33 USER_EVENT2.TYPE (P11-06), 33 USER_EVENT3.[IN] (P11-09), 33 USER_EVENT3.DLY (P11-12), 34 USER_EVENT3.TEXT (P11-11), 34 USER_EVENT3.TYPE (P11-10), 33 USER_EVENT4.[IN] (P11-13), 34 USER_EVENT4.DLY (P11-16), 34 USER_EVENT4.TEXT (P11-15), 34 USER_EVENT4.TYPE (P11-14), 34 USER_EVENT5.[IN] (P11-17), 34 USER_EVENT5.DLY (P11-20), 34 USER_EVENT5.TEXT (P11-19), 34 USER_EVENT5.TYPE (P11-18), 34 USER_EVENT6.[IN] (P11-21), 34 USER_EVENT6.DLY (P11-24), 35 USER_EVENT6.TEXT (P11-23), 35 USER_EVENT6.TYPE (P11-22), 35

## W

Winder Parameter, 66
WRITE_ENABLE_KEY (P12-07), 37
WRITE_ENABLE_PIN (P12-08), 37

## X

X18
09 (P36-11), 64
10 (P36-12), 65
11 (P36-13), 65
12 (P36-14), 65
13 (S136-17), 117
14 (S136-18), 117
15 (S136-19), 117
16 (S136-20), 117

## Z

ZERO_CUR_DETECT (P4-19), 16
Ident. No.: 3ADW 000078 R0301 Rev C

ABB Automation Products GmbH
Postfach 1180

