HIMatrix

Safety-Related Controller

F3 DIO 20/8 02 Manual

HIMA Paul Hildebrandt GmbH + Co KG Industrial Automation

Rev. 2.00 HI 800 345 E

All HIMA products mentioned in this manual are protected by the HIMA trade-mark. Unless noted otherwise, this also applies to other manufacturers and their respective products referred to herein.

HIMax[®], HIMatrix[®], SILworX[®], XMR[®] and FlexSILon[®] are registered trademarks of HIMA Paul Hildebrandt GmbH + Co KG.

All of the instructions and technical specifications in this manual have been written with great care and effective quality assurance measures have been implemented to ensure their validity. For questions, please contact HIMA directly. HIMA appreciates any suggestion on which information should be included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material without prior notice.

For further information, refer to the HIMA DVD and our website at http://www.hima.de and http://www.hima.com.

© Copyright 2013, HIMA Paul Hildebrandt GmbH + Co KG All rights reserved

Contact

HIMA contact details:

HIMA Paul Hildebrandt GmbH + Co KG

P.O. Box 1261

68777 Brühl, Germany

Phone: +49 6202 709-0 Fax: +49 6202 709-107 E-mail: info@hima.com

Revision	Revisions	Type of change		
index		technical	editorial	
1.00	Added: Configuration with SILworX	Х	Х	
1.01	Deleted: Chapter <i>Monitoring the Temperature State</i> integrated in the system manual		Х	
2.00	Revised: Chapters 3.4.1 and 3.4.2.1 Added: F3 DIO 20/8 023, F3 DIO 20/8 024, SIL 4 certified according to EN 50126, EN 50128 and EN 50129, Chapter 4.1.2	Х	X	

F3 DIO 20/8 02 Table of Contents

Table of Contents

1	Introduction	5
1.1	Structure and Use of this Manual	5
1.2	Target Audience	6
1.3	Formatting Conventions	7
1.3.1	Safety Notes	7
1.3.2	Operating Tips	8
2	Safety	9
2.1	Intended Use	9
2.1.1	Environmental Requirements	9
2.1.2	ESD Protective Measures	9
2.2	Residual Risk	10
2.3	Safety Precautions	10
2.4	Emergency Information	10
3	Product Description	11
3.1	Safety Function	11
3.1.1	Safety-Related Digital Inputs	11
3.1.1.1 3.1.1.2	Reaction in the Event of a Fault Line Control	12 12
3.1.2	Safety-Related Digital Outputs	13
3.1.2.1	Reaction in the Event of a Fault	14
3.2	Equipment, Scope of Delivery	15
3.2.1	IP Address and System ID (SRS)	15
3.3	Type Label	16
3.4	Assembly	17
3.4.1	LED Indicators	18
3.4.1.1 3.4.1.2	Operating Voltage LED System LEDs	18 18
3.4.1.3	Communication LEDs	19
3.4.1.4	I/O LEDs	19
3.4.2	Communication	20
3.4.2.1	Connections for Ethernet Communication	20
3.4.2.2	Network Ports Used for Ethernet Communication	20
3.4.3	Reset Key	21
3.5	Product Data	22
3.5.1	Product Data F3 DIO 20/8 021 (-20 °C)	23
3.5.2	Product Data F3 DIO 20/8 023	23
3.5.3	Product Data F3 DIO 20/8 024	23
3.6	Certified HIMatrix F3 DIO 20/8 02	24

HI 800 345 E Rev. 2.00 Page 3 of 48

Table of Contents F3 DIO 20/8 02

4	Start-up	25
4.1 4.1.1	Installation and Mounting Connecting the Digital Inputs	25 25
4.1.1.1	Surges on Digital Inputs	26
4.1.2	Connecting the Digital Outputs	26
4.1.3	Cable Plugs	27
4.1.4	Mounting the F3 DIO 20/8 02 in Zone 2	28
4.2 4.3	Configuration Configuration with SILworX	29 29
4.3.1 4.3.2	Parameters and Error Codes for the Inputs and Outputs Digital Inputs of F3 DIO 20/8 02	29 30
4.3.2.1 4.3.2.2	Tab: Module Tab: DI 20: Channels	30 31
4.3.3	Digital Outputs of F3 DIO 20/8 02	32
4.3.3.1 4.3.3.2	Tab: Module Tab: DO 8: Channels	32 33
4.4	Configuration with ELOP II Factory	34
4.4.1	Configuring the Inputs and Outputs	34
4.4.2 4.4.3	Signals and Error Codes for the Inputs and Outputs Digital Inputs of F3 DIO 20/8 02	34 35
4.4.4	Digital Outputs of F3 DIO 20/8 02	37
5	Operation	38
5.1	Handling	38
5.2	Diagnosis	38
6	Maintenance	39
6.1	Faults	39
6.2	Maintenance Measures	39
6.2.1 6.2.2	Loading the Operating System Proof Test	39 39
7	Decommissioning	40
8	Transport	41
9	Disposal	42
	Appendix	43
	Glossary	43
	Index of Figures	44
	Index of Tables	45
	Index	46

Page 4 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 1 Introduction

1 Introduction

This manual describes the technical characteristics of the device and its use. It provides information on how to install, start up and configure the module.

1.1 Structure and Use of this Manual

The content of this manual is part of the hardware description of the HIMatrix programmable electronic system.

This manual is organized in the following main chapters:

- Introduction
- Safety
- Product Description
- Start-up
- Operation
- Maintenance
- Decommissioning
- Transport
- Disposal

HIMatrix remote I/Os are available for the programming tools SILworX and ELOP II Factory. Which programming tool can be used, depends on the processor operating system of the HIMatrix remote I/O, refer to the following table:

Programming tool	Processor operating system		
SILworX	CPU OS V7 and higher		
ELOP II Factory	CPU OS up to V6.x		

Table 1: Programming Tools for HIMatrix Remote I/Os

In the manual, the differences are specified by using:

- Separated chapters
- Tables differentiating among the versions

i	Projects created with ELOP II Factory cannot be edited with SILworX, and vice versa!
i	Compact controllers and remote I/Os are referred to as devices.

HI 800 345 E Rev. 2.00 Page 5 of 48

1 Introduction F3 DIO 20/8 02

Additionally, the following documents must be taken into account:

Name	Content	Document number
HIMatrix System Manual Compact Systems	Hardware description of the HIMatrix compact systems	HI 800 141 E
HIMatrix System Manual Modular System F60	Hardware description of the HIMatrix modular system	HI 800 191 E
HIMatrix Safety Manual	Safety functions of the HIMatrix system	HI 800 023 E
HIMatrix Safety Manual for Railway Applications	Safety functions of the HIMatrix system using the HIMatrix in railway applications	HI 800 437 E
SILworX Online Help	Instructions on how to use SILworX	-
ELOP II Factory Online Help	Instructions on how to use ELOP II Factory, Ethernet IP protocol	-
SILworX First Steps	Introduction to SILworX using the HIMax system as an example	HI 801 103 E
ELOP II Factory First Steps	Introduction to ELOP II Factory	HI 800 006 E

Table 2: Additional Relevant Documents

The latest manuals can be downloaded from the HIMA website at www.hima.com. The revision index on the footer can be used to compare the current version of existing manuals with the Internet edition.

1.2 Target Audience

This document addresses system planners, configuration engineers, programmers of automation devices and personnel authorized to implement, operate and maintain the modules and systems. Specialized knowledge of safety-related automation systems is required.

Page 6 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 1 Introduction

1.3 Formatting Conventions

To ensure improved readability and comprehensibility, the following fonts are used in this document:

Bold To highlight important parts.

Names of buttons, menu functions and tabs that can be clicked and used

in the programming tool.

Italics For parameters and system variables

Courier Literal user inputs

RUN Operating state are designated by capitals

Chapter 1.2.3 Cross references are hyperlinks even though they are not particularly

marked. When the cursor hovers over a hyperlink, it changes its shape.

Click the hyperlink to jump to the corresponding position.

Safety notes and operating tips are particularly marked.

1.3.1 Safety Notes

The safety notes are represented as described below.

These notes must absolutely be observed to reduce the risk to a minimum. The content is structured as follows:

- Signal word: warning, caution, notice
- Type and source of risk
- Consequences arising from non-observance
- Risk prevention

A SIGNAL WORD

Type and source of risk!

Consequences arising from non-observance

Risk prevention

The signal words have the following meanings:

- Warning indicates hazardous situation which, if not avoided, could result in death or serious injury.
- Caution indicates hazardous situation which, if not avoided, could result in minor or modest injury.
- Notice indicates a hazardous situation which, if not avoided, could result in property damage.

NOTE

Type and source of damage! Damage prevention

HI 800 345 E Rev. 2.00 Page 7 of 48

1 Introduction F3 DIO 20/8 02

1.3.2 Operating Tips Additional information is structured as presented in the following example: The text corresponding to the additional information is located here. Useful tips and tricks appear as follows:

TIP

The tip text is located here.

Page 8 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 2 Safety

2 Safety

All safety information, notes and instructions specified in this document must be strictly observed. The product may only be used if all guidelines and safety instructions are adhered to.

This product is operated with SELV or PELV. No imminent risk results from the product itself. The use in Ex-zone is permitted if additional measures are taken.

2.1 Intended Use

HIMatrix components are designed for assembling safety-related controller systems.

When using the components in the HIMatrix system, comply with the following general requirements.

2.1.1 Environmental Requirements

Requirement type	Range of values 1)
Protection class	Protection class III in accordance with IEC/EN 61131-2
Ambient temperature	0+60 °C
Storage temperature	-40+85 °C
Pollution	Pollution degree II in accordance with IEC/EN 61131-2
Altitude	< 2000 m
Housing	Standard: IP20
Supply voltage	24 VDC
1) The values specified in th	a technical data apply and are decisive for devices with extended

The values specified in the technical data apply and are decisive for devices with extended environmental requirements.

Table 3: Environmental Requirements

Exposing the HIMatrix system to environmental conditions other than those specified in this manual can cause the HIMatrix system to malfunction.

2.1.2 ESD Protective Measures

Only personnel with knowledge of ESD protective measures may modify or extend the system or replace devices.

NOTE

Device damage due to electrostatic discharge!

- When performing the work, make sure that the workspace is free of static, and wear an ESD wrist strap.
- If not used, ensure that the device is protected from electrostatic discharge, e.g., by storing it in its packaging.

HI 800 345 E Rev. 2.00 Page 9 of 48

2 Safety F3 DIO 20/8 02

2.2 Residual Risk

No imminent risk results from a HIMatrix system itself.

Residual risk may result from:

- Faults related to engineering
- Faults related to the user program
- Faults related to the wiring

2.3 Safety Precautions

Observe all local safety requirements and use the protective equipment required on site.

2.4 Emergency Information

A HIMatrix system is a part of the safety equipment of a site. If a device or a module fails, the system enters the safe state.

In case of emergency, no action that may prevent the HIMatrix systems from operating safely is permitted.

Page 10 of 48 HI 800 345 E Rev. 2.00

3 Product Description

The safety-related **F3 DIO 20/8 02** remote I/O is a compact system in a metal housing with 20 digital inputs and 8 digital outputs.

The remote I/O is available in various model variants for SILworX and ELOP II Factory, see Table 4.

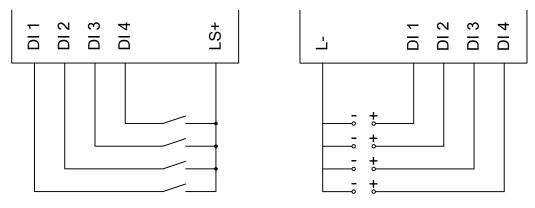
Remote I/Os are connected to individual HIMax or HIMatrix controllers via safe**ethernet**. They are used to extend the I/O level, but are not able to run any user program by themselves.

The remote I/O is suitable for mounting in Ex-zone 2, see Chapter 4.1.4.

The device is TÜV-certified for safety-related applications up to SIL 3 (IEC 61508, IEC 61511 and IEC 62061), Cat. 4 and PL e (EN ISO 13849-1) and SIL 4 (EN 50126, EN 50128 and EN 50129).

Further safety standards, application standards and test standards are specified in the certificates available on the HIMA website.

3.1 Safety Function


The remote I/O is equipped with safety-related digital inputs and outputs. The input values on the inputs are safely transmitted to the connected controller via safe**ethernet**. The outputs are safely assigned their values by the connected controller via safe**ethernet**.

3.1.1 Safety-Related Digital Inputs

The remote I/O is equipped with 20 digital inputs. The state (HIGH, LOW) of each input is signaled by an individual LED.

Mechanical contacts without own power supply or signal power source can be connected to the inputs. Potential-free mechanical contacts without own power supply are fed via an internal short-circuit-proof 24 V power source (LS+). Each of them supply a group of 4 mechanical contacts. Figure 1 shows how the connection is performed.

With signal voltage sources, the corresponding ground must be connected to the input (L-), see Figure 1.

Connection of potential-free mechanical contacts

Connection of signal power sources

Figure 1: Connections to Safety-Related Digital Inputs

For the external wiring and the connection of sensors, apply the de-energized-to-trip principle. Thus, if a fault occurs, the input signals adopt a de-energized, safe state (low level).

An external wire is not monitored, however, an open-circuit is considered as safe low level.

HI 800 345 E Rev. 2.00 Page 11 of 48

3.1.1.1 Reaction in the Event of a Fault

If the device detects a fault on a digital input, the user program processes a low level in accordance with the de-energized to trip principle.

The device activates the FAULT LED.

In addition to the channel signal value, the user program must also consider the corresponding error code.

The error code allows the user to configure additional fault reactions in the user program.

3.1.1.2 Line Control

Line control is used to detect short-circuits or open-circuits and can be configured for the remote I/O, e.g., on EMERGENCY STOP inputs complying with Cat. 4 and PL e in accordance with EN ISO 13849-1.

To this end, connect the digital outputs DO 1 through DO 8 of the system to the digital inputs (DI) of the same system as follows:

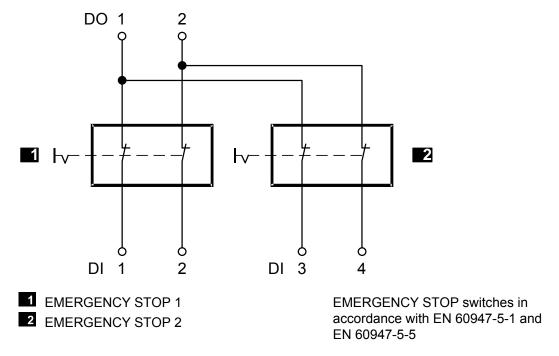


Figure 2: Line Control

The remote I/O pulses the pulsed outputs to detect short-circuits and open-circuits on the lines connected to the digital inputs. To do so, configure the *Value* [BOOL] -> system variable in SILworX or the *DO[0x].Value* system signal in ELOP II Factory. The variables must begin with channel 1 and reside in direct sequence, one after the other.

If the following faults occur, the *FAULT* LED located on the front plate of the device blinks, the inputs are set to low level and an (evaluable) error code is created:

- Cross-circuit between two parallel wires.
- Invalid connections of two lines (e.g., TO 2 to DI 3),
- Earth fault on one wire (with earthed ground only).
- Open-circuit or open contacts, i.e., including when one of the two EMERGENCY STOP switches mentioned above has been engaged, the FAULT LED blinks and the error code is created.

Page 12 of 48 HI 800 345 E Rev. 2.00

3.1.2 Safety-Related Digital Outputs

The remote I/O is equipped with 8 digital outputs. The state (HIGH, LOW) of each output is signaled by an individual LED (HIGH, LOW).

At the maximum ambient temperature, the outputs 1...3 and 5...7 can be loaded with 0.5 A each; and outputs 4 and 8 can be loaded with 1 A or with 2 A at an ambient temperature of up to $50\,^{\circ}\text{C}$.

Within a temperature range of 60...70 °C, all outputs of the F3 DIO 20/8 023 and F3 DIO 20/8 024 can be loaded with 0.5 A, see Table 15 and Table 16.

If an overload occurs, one or all digital outputs are switched off. If the overload is removed, the outputs are switched on again automatically, see Table 13.

The external wire of an output is not monitored, however, a detected short-circuit is signaled.

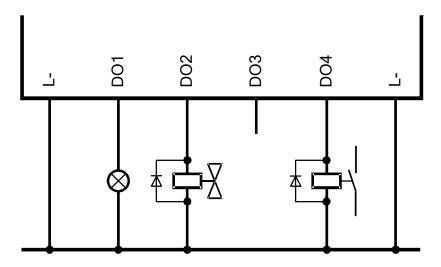


Figure 3: Connection of Actuators to Digital Outputs

The redundant connection of two outputs must be decoupled with diodes.

A CAUTION

For connecting a load to a 1-pole switching output, use the corresponding L- ground of the respective channel group (2-pole connection) to ensure that the internal protective circuit can function.

Inductive loads may be connected with no free-wheeling diode on the actuator. However, HIMA strongly recommends connecting a protective diode directly to the actuator.

HI 800 345 E Rev. 2.00 Page 13 of 48

3.1.2.1 Reaction in the Event of a Fault

If the device detects a faulty signal on a digital output, the affected module output is set to the safe (de-energized) state using the safety switches.

If a device fault occurs, all digital outputs are switched off.

In both cases, the devices activates the FAULT LED.

The error code allows the user to configure additional fault reactions in the user program.

Page 14 of 48 HI 800 345 E Rev. 2.00

3.2 Equipment, Scope of Delivery

The following table specifies the available remote I/O variants:

Designation	Description
F3 DIO 20/8 02	Remote I/O (20 digital inputs, 8 digital outputs),
	Operating temperature: 0+60 °C,
	for ELOP II Factory programming tool
F3 DIO 20/8 021	Remote I/O (20 digital inputs, 8 digital outputs),
(-20 °C)	Operating temperature: -20+60 °C,
	for ELOP II Factory programming tool
F3 DIO 20/8 023	Remote I/O (20 digital inputs, 8 digital outputs),
	Operating temperature: -25+70 °C,
	Salt mist resistance in accordance with IEC 60068-2-11,
	for ELOP II Factory programming tool
F3 DIO 20/8 024	Remote I/O (20 digital inputs, 8 digital outputs),
	Operating temperature: -25+70 °C (temperature class T1),
	Vibration and shock tested according to EN 50125-3 and EN 50155,
	class 1B according to IEC 61373, for ELOP II Factory programming tool
F3 DIO 20/8 02	Remote I/O (20 digital inputs, 8 digital outputs),
SILworX	Operating temperature: 0+60 °C,
OILWOIX	for SILworX programming tool
F3 DIO 20/8 021	Remote I/O (20 digital inputs, 8 digital outputs),
SILworX	Operating temperature: -20+60 °C,
(-20 °C)	for SILworX programming tool
F3 DIO 20/8 023	Remote I/O (20 digital inputs, 8 digital outputs),
SILworX	Operating temperature: -25+70 °C,
	Salt mist resistance in accordance with IEC 60068-2-11,
	for SILworX programming tool
F3 DIO 20/8 024	Remote I/O (20 digital inputs, 8 digital outputs),
SILworX	Operating temperature: -25+70 °C (temperature class T1),
	Vibration and shock tested according to EN 50125-3 and EN 50155, class 1B according to IEC 61373,
	for SILworX programming tool

Table 4: Available Variants

3.2.1 IP Address and System ID (SRS)

A transparent label is delivered with the device to allow one to note the IP address and the system ID (SRS for system rack slot) after a change.

I٢	١.		SRS		
		 	 •	 	

Default value for IP address: 192.168.0.99

Default value for SRS: 60 000.200.0 (SILworX)

60 000.0.0 (ELOP II Factory)

The label must be affixed such that the ventilation slots in the housing are not obstructed.

Refer to the First Steps manual of the programming tool for more information on how to modify the IP address and the system ID.

HI 800 345 E Rev. 2.00 Page 15 of 48

3.3 Type Label

The type plate contains the following details:

- Product name
- Bar code (1D or 2D code)
- Part no.
- Production year
- Hardware revision index (HW Rev.)
- Firmware revision index (FW Rev.)
- Operating voltage
- Mark of conformity

Figure 4: Sample Type Label

Page 16 of 48 HI 800 345 E Rev. 2.00

3.4 Assembly

This chapter describes the layout and function of the remote I/Os, and their communication via safe**ethernet**.

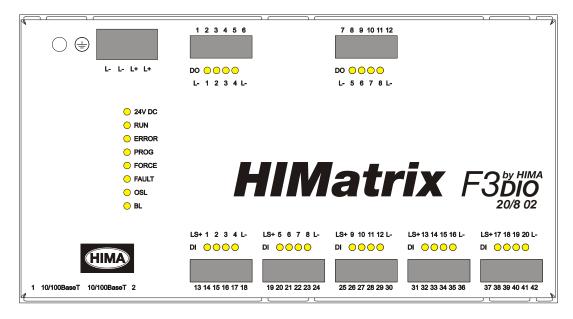


Figure 5: Front View

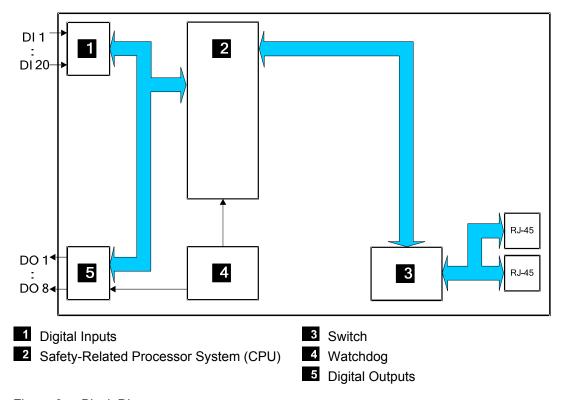


Figure 6: Block Diagram

HI 800 345 E Rev. 2.00 Page 17 of 48

3.4.1 LED Indicators

The light-emitting diodes (LEDs) indicate the operating state of the remote I/O. The LEDs are classified as follows:

- Operating voltage LED
- System LEDs
- Communication LEDs
- I/O LEDs

3.4.1.1 Operating Voltage LED

LED	Color	Status	Description
24 VDC	Green	On	24 VDC operating voltage present
		Off	No operating voltage

Table 5: Operating Voltage LED

3.4.1.2 System LEDs

While the system is being booted, all LEDs are lit simultaneously.

LED	Color	Status	Description
RUN	Green	On	Device in RUN, normal operation
		Blinking	Device in STOP
			A new operating system is being loaded.
		Off	The device is not in the RUN state.
ERROR	Red	On	The device is in the ERROR STOP state.
			Internal fault detected by self-tests, e.g., hardware faults or cycle time overrun.
			The processor system can only be restarted with a command from the PADT (reboot).
		Blinking	If ERROR blinks and all others LEDs are lit simultaneously, the boot loader has detected an operating system fault in the flash memory and waits for a new operating system to be loaded.
		Off	No faults detected.
PROG	Yellow	On	A new configuration is being loaded into the device.
		Blinking	The device switches from INIT to STOP
			A new operating system is being loaded into the flash ROM.
		Off	No configuration or operating system is being loaded.
FORCE	Yellow	Off	The FORCE LED of a remote I/O is not functioning. The FORCE LED of the associated controller serves to signal the forcing of a remote I/O.
FAULT	Yellow	On	The loaded configuration is not valid.
			The new operating system is corrupted (after OS download).
		Blinking	Fault while loading a new operating system
			One or multiple I/O faults occurred.
		Off	None of the described faults occurred.
OSL	Yellow	Blinking	Operating system emergency loader active.
		Off	Operating system emergency loader inactive.
BL	Yellow	ellow Blinking OS and OSL binary defective or hardware fault, INIT_FAIL.	
		Off	None of the described faults occurred.

Table 6: System LEDs

Page 18 of 48 HI 800 345 E Rev. 2.00

3.4.1.3 Communication LEDs

All RJ-45 connectors are provided with a small green and a yellow LEDs. The LEDs signal the following states:

LED	Status	Description		
Green	On	Full duplex operation		
	Blinking	Collision		
	Off	Half duplex operation, no collision		
Yellow	On	Connection available		
	Blinking	Interface activity		
	Off	No connection available		

Table 7: Ethernet Indicators

3.4.1.4 I/O LEDs

LED	Color	Status	Description	
DI 120	Yellow	On	The related input is active (energized).	
		Off	The related input is inactive (de-energized).	
DO 18	Yellow	On	On The related output is active (energized).	
		Off	The related output is inactive (de-energized).	

Table 8: I/O LEDs

HI 800 345 E Rev. 2.00 Page 19 of 48

3.4.2 Communication

The remote I/O communicates with the associated controller via safeethernet.

3.4.2.1 Connections for Ethernet Communication

Property	Description	
Port	2 x RJ-45	
Transfer standard	10BASE-T/100BASE-Tx, half and full duplex	
Auto negotiation	Yes	
Auto crossover	Yes	
IP address	Freely configurable ¹⁾	
Subnet mask	Freely configurable ¹⁾	
Supported protocols Safety-related: safeethernet Standard protocols: Programming and debugging tool (PADT), SNTP		
1) The general rules for assigning IP address and subnet masks must be adhered to.		

Table 9: Ethernet Interfaces Properties

The two RJ-45 connectors with integrated LEDs are located on the bottom left-hand side of the housing. Refer to Chapter 3.4.1.3 for a description of the LEDs' function.

The connection parameters are read based on the MAC address (media access control address) defined during manufacturing.

The MAC address for the remote I/O is specified on a label located above the two RJ-45 connectors (1 and 2).

MAC 00:E0:A1:00:06:C0

Figure 7: Sample MAC Address Label

The remote I/O is equipped with an integrated switch for Ethernet communication. For further information on the integrated switch and safe**ethernet**, refer to Chapter *Communication* of the system manual for compact systems (HI 800 141 E).

3.4.2.2 Network Ports Used for Ethernet Communication

UDP ports	Use
8000	Programming and operation with the programing tool
8001	Configuration of the remote I/O using the PES (ELOP II Factory)
8004	Configuration of the remote I/O using the PES (SILworX)
6010	safeethernet
123	SNTP (time synchronization between PES and remote I/O, PES and external devices)

Table 10: Network Ports in Use

Page 20 of 48 HI 800 345 E Rev. 2.00

3.4.3 Reset Key

The remote I/O is equipped with a reset key. The key is only required if the user name or password for administrator access is not known. If only the IP address set for the remote I/O does not match the PADT (PC), the connection can be established with a Route add entry on the PC.

i

Only the model variants without protective lacquer are equipped with a reset key.

The key can be accessed through a small round hole located approximately 5 cm from the upper left-hand side of the housing. The key is engaged using a suitable pin made of insulating material to avoid short-circuits within the remote I/O.

The reset is only effective if the remote I/O is rebooted (switched off and on) while the key is simultaneously engaged for at least 20 s. Engaging the key during operation has no effect.

Properties and behavior of the remote I/IO after a reboot with engaged reset key:

- Connection parameters (IP address and system ID) are set to the default values.
- All accounts are deactivated except for the administrator default account with empty password.

After a new reboot without the reset key engaged, the connection parameters (IP address and system ID) and accounts become effective.

- Those configured by the user.
- Those valid prior to rebooting with the reset key engaged, if no changes were performed.

HI 800 345 E Rev. 2.00 Page 21 of 48

3.5 Product Data

General	
Response time	≥ 10 ms
Ethernet interfaces	2 x RJ-45, 10BASE-T/100BASE-Tx with integrated switch
Operating voltage	24 VDC, -15+20 %, r _{PP} ≤ 15 %,
	from a power supply unit with safe insulation in accordance with IEC 61131-2
Current input	max. 8 A (with maximum load) Idle: approx. 0.4 A at 24 V
Fuse (external)	10 A time-lag (T)
Operating temperature	0+60 °C
Storage temperature	-40+85 °C
Type of protection	IP20
Max. dimensions (without plug)	Width: 207 mm (with housing screws) Height: 114 mm (with fixing bolt) Depth: 66 mm (with earthing screw)
Weight	approx. 1 kg

Table 11: Product Data

Digital inputs		
Number of inputs		20 (non-galvanically separated)
High level: Voltage		1530 VDC
	Current input	≥ 2 mA at 15 V
Low level:	Voltage	max. 5 VDC
	Current input	max. 1.5 mA (1 mA at 5 V)
Switching point		typ. 7.5 V
Supply		5 x 20 V / 100 mA (at 24 V), short-circuit-proof

Table 12: Specifications for Digital Inputs

Digital outputs			
Number of outputs	8 (non-galvanically separated)		
Output voltage	≥ L+ minus 2 V		
Output current	Channels 13 and 57	': 0.5 A up to 60 °C	
	The output current of the channels 4 and 8 depends on the ambient temperature.		
	Ambient temperature	Output current	
	< 50 °C	2 A	
	5060 °C	1 A	
Minimum load	2 mA for each channel		
Internal voltage drop	max. 2 V at 2 A		
Leakage current (with low level)	max. 1 mA at 2 V		
Behavior upon overload	The affected output is switched off and cyclically switched on again		
Total output current	max. 7 A, upon overload, all outpu switched on again	its are switched off and cyclically	

Table 13: Specifications for the Digital Outputs

Page 22 of 48 HI 800 345 E Rev. 2.00

3.5.1 Product Data F3 DIO 20/8 021 (-20 °C)

The F3 DIO 20/8 021 (-20 °C) model variant is intended for use at the extended temperature range of -20...+60 °C. The electronic components are coated with a protective lacquer.

F3 DIO 20/8 021		
Operating temperature	-20+60 °C	
Weight	approx. 1.2 kg	

Table 14: Product Data F3 DIO 20/8 021 (-20 °C)

3.5.2 Product Data F3 DIO 20/8 023

Model variant F3 DIO 20/8 023 is designed for use under extended environmental conditions. The electronic components are coated with a protective lacquer.

F3 DIO 20/8 023		
Operating temperature	-25+70 °C	
Output current of the digital outputs	Channels 13 and 57: 0.5 A The output current of the channels 4 and 8 depends on the	
- Carpano	ambient temperature.	
	Ambient temperature	Output current
	< 50 °C	2 A
	5060 °C	1 A
	> 60 °C	0.5 A
Weight	approx. 1.2 kg	

Table 15: Product Data of F3 DIO 20/8 023

The remote I/O F3 DIO 20/8 023 meets increased requirements concerning salt mist in accordance with IEC 60068-2-11 (5 % for the duration of 96 hours).

3.5.3 Product Data F3 DIO 20/8 024

The F3 DIO 20/8 024 model variant is intended for use in railway applications. The electronic components are coated with a protective lacquer.

F3 DIO 20/8 024			
Operating temperature	-25+70 °C (temperature class T1)		
Output current of the digital outputs	Channels 13 and 57: 0.5 A The output current of the channels 4 and 8 depends on the ambient temperature.		
	Ambient temperature	Output current	
	< 50 °C	2 A	
	5060 °C	1 A	
	> 60 °C	0.5 A	
Weight	approx. 1 kg		

Table 16: Product Data of F3 DIO 20/8 024

The remote I/O F3 DIO 20/8 024 meets the conditions for vibrations and shock test according to IEC 61373, category 1, class B.

HI 800 345 E Rev. 2.00 Page 23 of 48

3.6 Certified HIMatrix F3 DIO 20/8 02

HIMatrix F3 DIO 20/8 02	
CE	EMC, ATEX Zone 2
TÜV	IEC 61508 1-7:2000 up to SIL 3
	IEC 61511:2004
	EN ISO 13849-1:2008 up to Cat. 4 und PL e
UL Underwriters	ANSI/UL 508, NFPA 70 – Industrial Control Equipment
Laboratories Inc.	CSA C22.2 No.142
	UL 1998 Software Programmable Components
	NFPA 79 Electrical Standard for Industrial Machinery
	IEC 61508
FM Approvals	Class I, DIV 2, Groups A, B, C and D
	Class 3600, 1998
	Class 3611, 1999
	Class 3810, 1989
	Including Supplement #1, 1995
	CSA C22.2 No. 142
	CSA C22.2 No. 213
TÜV CENELEC	Railway applications
	EN 50126: 1999 up to SIL 4
	EN 50128: 2001 up to SIL 4
	EN 50129: 2003 up to SIL 4

Table 17: Certificates

Page 24 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 4 Start-up

4 Start-up

To start up the remote I/O, it must be mounted, connected and configured in the programming tool.

4.1 Installation and Mounting

The remote I/O is mounted on a 35 mm DIN rail such as described in the HIMatrix system manual for compact systems.

When laying cables (long cables, in particular), take appropriate measures to avoid interference, e.g., by separating the signal lines from the power lines.

When dimensioning the cables, ensure that their electrical properties have no negative impact on the measuring circuit.

4.1.1 Connecting the Digital Inputs

Use the following terminals to connect the digital inputs:

Terminal	Designation	Function (inputs)
13	LS+	Sensor supply of the inputs 14
14	1	Digital input 1
15	2	Digital input 2
16	3	Digital input 3
17	4	Digital input 4
18	L-	Ground
Terminal	Designation	Function (inputs)
19	LS+	Sensor supply of the inputs 58
20	5	Digital input 5
21	6	Digital input 6
22	7	Digital input 7
23	8	Digital input 8
24	L-	Ground
Terminal	Designation	Function (inputs)
25	LS+	Sensor supply of the inputs 912
26	9	Digital input 9
27	10	Digital input 10
28	11	Digital input 11
29	12	Digital input 12
30	L-	Ground
Terminal	Designation	Function (inputs)
31	LS+	Sensor supply of the inputs 1314
32	13	Digital input 13
33	14	Digital input 14
34	15	Digital input 15
35	16	Digital input 16
36	L-	Ground

HI 800 345 E Rev. 2.00 Page 25 of 48

4 Start-up F3 DIO 20/8 02

Terminal	Designation	Function (inputs)
37	LS+	Sensor supply of the inputs 1520
38	17	Digital input 17
39	18	Digital input 18
40	19	Digital input 19
41	20	Digital input 20
42	L-	Ground

Table 18: Terminal Assignment for the Digital Inputs

4.1.1.1 Surges on Digital Inputs

Due to the short cycle time of the HIMatrix systems, a surge pulse as described in EN 61000-4-5 can be read in to the digital inputs as a short-term high level.

The following measures ensure proper operation in environments where surges may occur:

- 1. Install shielded input wires
- 2. Program noise blanking in the user program. A signal must be present for at least two cycles before it is evaluated. The fault reaction is triggered with a corresponding delay.
- $\overset{\bullet}{1} \qquad \text{The measures specified above are not necessary if the plant design precludes surges from occurring within the system.}$

In particular, the design must include protective measures with respect to overvoltage, lightning, earth grounding and plant wiring in accordance with the relevant standards and the instructions specified in the system manual (HI 800 141 E or HI 800 191 E).

4.1.2 Connecting the Digital Outputs

Use the following terminals to connect the digital outputs:

Terminal	Designation	Function (outputs, DO+)
1	L-	Ground channel group
2	1	Digital output 1
3	2	Digital output 2
4	3	Digital output 3
5	4	Digital output 4 (for increased load)
6	L-	Ground channel group
Terminal	Designation	Function (outputs, DO+)
7	L-	Ground channel group
8	5	Digital output 5
9	6	Digital output 6
10	7	Digital output 7
11	8	Digital output 8 (for increased load)
12	L-	Ground channel group

Table 19: Terminal Assignment for the Digital Outputs

Page 26 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 4 Start-up

4.1.3 Cable Plugs

Cable plugs attached to the pin headers of the devices are used to connect to the power supply and to the field zone. The cable plugs are included within the scope of delivery of the HIMatrix devices and modules.

The devices power supply connections feature the following properties:

Connection to the power supply		
Cable plugs	Four poles, screw terminals	
Wire cross-section	0.22.5 mm ² (single-wire) 0.22.5 mm ² (finely stranded) 0.22.5 mm ² (with wire end ferrule)	
Stripping length	10 mm	
Screwdriver	Slotted 0.6 x 3.5 mm	
Tightening torque	0.40.5 Nm	

Table 20: Power Supply Cable Plug Properties

Connection to the field zone			
Number of cable plugs	7 pieces, six poles, screw terminals		
Wire cross-section	0.21.5 mm ² (single-wire)		
	0.21.5 mm ² (finely stranded)		
	0.21.5 mm ² (with wire end ferrule)		
Stripping length	6 mm		
Screwdriver	Slotted 0.4 x 2.5 mm		
Tightening torque	0.20.25 Nm		

Table 21: Input and Output Cable Plug Properties

HI 800 345 E Rev. 2.00 Page 27 of 48

4 Start-up F3 DIO 20/8 02

4.1.4 Mounting the F3 DIO 20/8 02 in Zone 2

(EC Directive 94/9/EC, ATEX)

The remote I/O is suitable for mounting in zone 2. Refer to the corresponding declaration of conformity available on the HIMA website.

When mounting the device, observe the special conditions specified in the following section.

Specific Conditions X

1. Mount the remote I/O in an enclosure that meets the EN 60079-15 requirements and achieves a type of protection of at least IP54, in accordance with EN 60529. Provide the enclosure with the following label:

Work is only permitted in the de-energized state

Exception:

If a potentially explosive atmosphere has been precluded, work can also performed when the controller is under voltage.

- 2. The enclosure in use must be able to safely dissipate the generated heat. Depending on the output load and supply voltage, the HIMatrix F3 DIO 20/8 02 has a power dissipation ranging between 9 W and 25 W.
- 3. Protect the HIMatrix F3 DIO 20/8 02 with a 10 A time-lag fuse.

 The 24 VDC power must come from a power supply unit with safe isolation. Use power supply units of type PELV or SELV only.
- 4. Applicable standards:

VDE 0170/0171 Part 16, DIN EN 60079-15: 2004-5 VDE 0165 Part 1, DIN EN 60079-14: 1998-08

Pay particular attention to the following sections:

DIN EN 60079-15:

Chapter 5 Design

Chapter 6 Terminals and cabling
Chapter 7 Air and creeping distances

Chapter 14 Connectors

DIN EN 60079-14:

Chapter 5.2.3 Equipment for use in zone 2
Chapter 9.3 Cabling for zones 1 and 2
Chapter 12.2 Equipment for zones 1 and 2

The remote I/O is additionally equipped with the label represented below:

Paul Hildebrandt GmbH + Co KG
A.-Bassermann-Straße 28, D-68782 Brühl

HIMatrix $\langle \varepsilon_x \rangle$ II 3 G Ex nA II T4 X

F3 DIO 20/8 02 0°C ≤ Ta ≤ 60°C

Besondere Bedingungen X beachten!

Figure 8: Label for Ex Conditions

Page 28 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 4 Start-up

4.2 Configuration

The remote I/O can be configured using a programming tool, SILworX or ELOP II Factory. Which programming tool should be used, depends on the revision status of the operating system (firmware):

- SILworX is required for CPU OS V7 and higher.
- ELOP II Factory is required for CPU OS up to V6.x.

How to switch between operating systems is described in Chapter *Loading Operating Systems* of the system manual for compact systems (HI 800 141 E).

4.3 Configuration with SILworX

In the Hardware Editor, the remote I/Os are represented like a base plate equipped with the following modules:

- Processor module (CPU)
- Input module (DI 20)
- Output module (DO 8)

Double-click the module to open the Detail View with the corresponding tabs. The tabs are used to assign the global variables configured in the user program to the system variables.

4.3.1 Parameters and Error Codes for the Inputs and Outputs

The following tables specify the system parameters that can be read and set for the inputs and outputs, including the corresponding error codes.

In the user program, the error codes can be read using the variables assigned within the logic.

The error codes can also be displayed in SILworX.

HI 800 345 E Rev. 2.00 Page 29 of 48

4 Start-up F3 DIO 20/8 02

4.3.2 Digital Inputs of F3 DIO 20/8 02

The following tables present the statuses and parameters for the input module (DI 20) in the same order as given in the Hardware Editor.

4.3.2.1 Tab: **Module**

The **Module** tab contains the following system parameters:

System parameter	Data type	R/W	Description		
DI Number of	USINT	W	Number of pulsed outputs (supply outputs)		
Pulsed Channels			Coding Description		
			0 No pulsed output planned for SC/OC ¹⁾ detection		
			1 Pulsed output 1 planned for SC/OC ¹⁾ detection		
			Pulsed output 1 and 2 planned for SC/OC ¹⁾ detection		
			8 Pulsed outputs 18 planned for SC/OC ¹⁾ detection		
			Pulsed outputs must not be used as safety-related outputs!		
DI Pulse Slot	UDINT	W	Pulse module slot		
			(SC/OC ¹⁾ detection), set the value to 1		
DI Pulse Delay [μs]	UINT	W	Waiting time for line control (detection of short-circuits or cross-circuits)		
DI.Error Code	WORD	R	Error codes for all digital inputs		
			Coding Description		
			0x0001 Fault within the digital inputs		
			0x0002 FTT test of test pattern faulty		
Module Error Code	WORD	R	Module error code		
			Coding Description		
			0x0000 I/O processing, if required with errors		
			see other error codes		
			0x0001 No I/O processing (CPU not in RUN)		
			0x0002 No I/O processing during the booting test		
			0x0004 Manufacturer interface operating		
			0x0010 No I/O processing: invalid configuration		
			0x0020 No I/O processing: fault rate exceeded		
			0x0040/ No I/O processing: configured module not plugged in		
Module SRS	[UDINT]	R	Slot number (System Rack Slot)		
Module Type	[UINT]	R	Type of module, target value: 0x00A5 [165 _{dec}]		
1) SC/OC (SC = short-	-circuit, OC :	= open-	circuit)		

Table 22: SILworX - System Parameters for Digital Inputs, **Module** Tab

Page 30 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 4 Start-up

4.3.2.2 Tab: **DI 20: Channels**

The **DI 20: Channels** tab contains the following system parameters.

System parameter	Data type	R/W	Description	
Channel no.		R	Channel numb	er, defined by default
-> Error Code	BYTE	R	Error codes for	the digital input channels
[BYTE]			Coding	Description
			0x01	Fault in the digital input module
			0x10	Short-circuit of the channel
			0x80	Intermittence between pulsed output DO and digital input DI, e.g., Open-circuit Open switch L+ undervoltage
-> Value [BOOL]	BOOL	R	Input values fo	r the digital input channels
			0 = input de-en	<u> </u>
			1 = input energ	
Pulsed Output	USINT	W	Source channe	el for pulsed supply
[USINT] ->			Coding	Description
			0	Input channel
			1	Pulse of the 1st DO channel
			2	Pulse of the 2nd DO channel
			8	Pulse of the 8th DO channel

Table 23: SILworX - System Parameters for Digital Inputs, **DI 20: Channels** Tab

HI 800 345 E Rev. 2.00 Page 31 of 48

4 Start-up F3 DIO 20/8 02

4.3.3 Digital Outputs of F3 DIO 20/8 02

The following tables present the statuses and parameters for the output module (DO 8) in the same order as given in the Hardware Editor.

4.3.3.1 Tab **Module**

The **Module** tab contains the following system parameters:

System parameter	Data type	R/W	Description		
DO.Error Code	WORD	R	Error codes for all digital outputs		
			Coding	Description	
			0x0001	Fault within the digital outputs	
			0x0002	Test of safety shutdown returns a fault	
			0x0004	Test of auxiliary voltage returns a fault	
			0x0008	FTT test of test pattern faulty	
			0x0010	Output switch test pattern faulty	
			0x0020	Output switch test pattern (shutdown test of the outputs) faulty	
			0x0040	Active shutdown via WD faulty	
			0x0200	All outputs are switched off, total current exceeded	
			0x0400	FTT test: 1st temperature threshold exceeded	
			0x0800	FTT test: 2nd temperature threshold exceeded	
			0x1000	FTT test: Monitoring of auxiliary voltage 1: Undervoltage	
Module Error Code	WORD	R	Module error o	code	
			Coding	Description	
			0x0000	I/O processing, if required with errors, see other error codes	
			0x0001	No I/O processing (CPU not in RUN)	
			0x0002	No I/O processing during the booting test	
			0x0004	Manufacturer interface operating	
			0x0010	No I/O processing: invalid configuration	
			0x0020	No I/O processing: fault rate exceeded	
			0x0040/ 0x0080	No I/O processing: configured module not plugged in	
Module SRS	UDINT	R	Slot number (System Rack Slot)		
Module Type	UINT	R	Type of module, target value: 0x00B4 [180 _{dec}]		

Table 24: SILworX - System Parameters for Digital Outputs, **Module** Tab

Page 32 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 4 Start-up

4.3.3.2 Tab **DO 8: Channels**

The **DO 8: Channels** tab contains the following system parameters.

System parameter	Data type	R/W	Description			
Channel no.		R	Channel numb	Channel number, defined by default		
-> Error Code	BYTE R		Error codes for the digital output channels			
[BYTE]			Coding	Description		
			0x01	Fault in the digital output module		
			0x02	Channel shutdown due to overload		
			0x04	Error while reading back the digital outputs		
			0x08	Error while reading back the status of the digital outputs		
			0x40	External short-circuit or short-circuit of the EMC protection returns an error		
			0x80	Channel is switched off due to fault on the corresponding channel		
Value [BOOL]	BOOL	W	Output value for DO channels:			
->			1 = output energized			
			0 = output de-energized			

Table 25: SILworX - System Parameters for Digital Outputs, **DO 8: Channels** Tab

HI 800 345 E Rev. 2.00 Page 33 of 48

4 Start-up F3 DIO 20/8 02

4.4 Configuration with ELOP II Factory

4.4.1 Configuring the Inputs and Outputs

The signals previously defined in the Signal Editor (Hardware Management) are assigned to the individual channels (inputs and outputs) using ELOP II Factory. Refer to the system manual for compact systems or the online help for more details.

The following chapter describes the system signals used for assigning signals in the remote I/O.

4.4.2 Signals and Error Codes for the Inputs and Outputs

The following tables specify the system signals that can be read and set for the inputs and outputs, including the corresponding error codes.

In the user program, the error codes can be read using the signals assigned within the logic.

The error codes can also be displayed in ELOP II Factory.

Page 34 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 4 Start-up

4.4.3 Digital Inputs of F3 DIO 20/8 02

System signal	R/W	Description			
Mod.SRS [UDINT]	R	Slot number (System Rack Slot)			
Mod. Type [UINT]	R	Type of module, target value: 0x00A5 [165 _{dec}]			
Mod. Error Code	R	Module error code			
[WORD]		Coding	Description		
		0x0000	I/O processing, if required with errors		
			see other error codes		
		0x0001	No I/O processing (CPU not in RUN)		
		0x0002	No I/O processing during the booting test		
		0x0004	Manufacturer interface operating		
		0x0010	No I/O processing: invalid configuration		
		0x0020	No I/O processing: fault rate exceeded		
		0x0040/ 0x0080	No I/O processing: configured module not plugged in		
DI.Error Code	R	Error codes fo	r all digital inputs		
[WORD]		Coding	Description		
		0x0001	Fault within the digital inputs		
		0x0002	FTT test of test pattern faulty		
DI[xx].Error Code	R	Error codes fo	r the digital input channels		
[BYTE]		Coding	Description		
		0x01	Fault in the digital input module		
		0x10	Short-circuit of the channel		
		0x80	Intermittence between pulsed output DO and digital input		
			DI, e.g.,		
			Open-circuit		
			Open switchL+ undervoltage		
DI[xx].Value [BOOL]	R	Input values fo	or the digital input channels		
DI[XX]. Value [DOOL]		0 = input de-ei			
		1 = input energ	<u> </u>		
DI Number of	W	Number of pulsed outputs (supply outputs)			
Pulsed Channels		Coding	Description		
[USINT]		0	No pulsed output planned for SC/OC ¹⁾ detection		
		1	Pulsed output 1 planned for SC/OC ¹⁾ detection		
		2	Pulsed output 1 and 2 planned for SC/OC ¹⁾ detection		
		8	Pulsed outputs 18 planned for SC/OC ¹⁾ detection		
		Pulsed outpu	ts must not be used as safety-related outputs!		
DI Pulse Slot	W	Pulse module slot			
[UDINT]		(SC/OC ¹⁾ detection), set the value to 1			
DI[xx].	W	,	el for pulsed supply		
Pulsed Output		Coding	Description		
[USINT]		0	Input channel		
		1	Pulse of the 1st DO channel		
		2	Pulse of the 2nd DO channel		
		8	Pulse of the 8th DO channel		
L	1	I - L			

HI 800 345 E Rev. 2.00 Page 35 of 48

4 Start-up F3 DIO 20/8 02

System signal	R/W	Description
DI Pulse Delay [10E-6s] [UINT]	W	Waiting time for line control (detection of short-circuits or cross-circuits)
1) SC/OC (SC = short-circuit, OC = open-circuit)		

Table 26: ELOP II Factory - Digital Input System Signals

Page 36 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 4 Start-up

4.4.4 Digital Outputs of F3 DIO 20/8 02

System Signal	R/W	Description			
Mod.SRS [UDINT]	R	Slot number (System Rack Slot)			
Mod. Type [UINT]	R	Type of module, target value: 0x00B4 [180 _{dec}]			
Mod. Error Code	R	Module error code			
[WORD]		Coding	Description		
		0x0000	I/O processing, if required with errors, see other error codes		
		0x0001	No I/O processing (CPU not in RUN)		
		0x0002	No I/O processing during the booting test		
		0x0004	Manufacturer interface operating		
		0x0010	No I/O processing: invalid configuration		
		0x0020	No I/O processing: fault rate exceeded		
		0x0040/ 0x0080	No I/O processing: configured module not plugged in		
DOy.Error Code	R	Error codes for all digital outputs			
[WORD]		Coding	Description		
		0x0001	Fault within the digital outputs		
		0x0002	Test of safety shutdown returns a fault		
		0x0004	Test of auxiliary voltage returns a fault		
		0x0008	FTT test of test pattern faulty		
		0x0010	Output switch test pattern faulty		
		0x0020	Output switch test pattern (shutdown test of the outputs) faulty		
		0x0040	Active shutdown via WD faulty		
		0x0200	All outputs are switched off, total current exceeded		
		0x0400	FTT test: 1st temperature threshold exceeded		
		0x0800	FTT test: 2nd temperature threshold exceeded		
		0x1000	FTT test: Monitoring of auxiliary voltage 1: Undervoltage		
DOy[xx].Error Code	R	Error codes for the digital output channels			
[BYTE]		Coding	Description		
		0x01	Fault in the digital output module		
		0x02	Channel shutdown due to overload		
		0x04	Error while reading back the digital outputs		
		0x08	Error while reading back the status of the digital outputs		
DOy[xx].Value	W	Output value for DO channels:			
[BOOL]		1 = output energized			
		0 = output de-	energizea		
		Pulsed outputs must not be used as safety-related outputs!			

Table 27: ELOP II Factory - Digital Output System Signals

HI 800 345 E Rev. 2.00 Page 37 of 48

5 Operation F3 DIO 20/8 02

5 Operation

The remote I/O can only operated together with a controller. No specific monitoring is required for remote I/Os.

5.1 Handling

Handling of the remote I/O during operation is not required.

5.2 Diagnosis

A first diagnosis results from evaluating the LEDs, see Chapter 3.4.1.

The device diagnostic history can also be read using the programming tool.

Page 38 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 6 Maintenance

6 Maintenance

No maintenance measures are required during normal operation.

If a failure occurs, the defective module or device must be replaced with a module or device of the same type or with a replacement model approved by HIMA.

Only the manufacturer is authorized to repair the device/module.

6.1 Faults

Refer to Chapter 3.1.1.1, for more information on the fault reaction of digital inputs.

Refer to Chapter 3.1.2.1, for more information on the fault reaction of digital outputs.

If the test harnesses detect safety-critical faults, the module enters the STOP_INVALID state and will remain in this state. This means that the input signals are no longer processed by the device and the outputs switch to the de-energized, safe state. The evaluation of diagnostics provides information on the fault cause.

6.2 Maintenance Measures

The following measures are required for the device:

- Loading the operating system, if a new version is required
- Executing the proof test

6.2.1 Loading the Operating System

HIMA is continuously improving the operating system of the devices. HIMA recommends to use system downtimes to load a current version of the operating system into the devices.

Refer to the release list to check the consequences of the new operation system version on the system!

The operating system is loaded using the programming tool.

Prior to loading the operating system, the device must be in STOP (displayed in the programming tool). Otherwise, stop the device.

For more information, refer to the programming tool documentation.

6.2.2 Proof Test

HIMatrix devices and modules must be subjected to a proof test in intervals of 10 years. For more information, refer to the safety manual (HI 800 023 E).

HI 800 345 E Rev. 2.00 Page 39 of 48

7 Decommissioning F3 DIO 20/8 02

7 Decommissioning

Remove the supply voltage to decommission the device. Afterwards pull out the pluggable screw terminal connector blocks for inputs and outputs and the Ethernet cables.

Page 40 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 8 Transport

8 Transport

To avoid mechanical damage, HIMatrix components must be transported in packaging.

Always store HIMatrix components in their original product packaging. This packaging also provides protection against electrostatic discharge. Note that the product packaging alone is not suitable for transport.

HI 800 345 E Rev. 2.00 Page 41 of 48

9 Disposal F3 DIO 20/8 02

9 Disposal

Industrial customers are responsible for correctly disposing of decommissioned HIMatrix hardware. Upon request, a disposal agreement can be arranged with HIMA.

All materials must be disposed of in an ecologically sound manner.

Page 42 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 Appendix

Appendix

Glossary

ARP Address resolution protocol: Network protocol for assigning the network addresses to hardware addresses AI Analog input AO Analog output COM Communication module CRC Cyclic redundancy check DI Digital input DO Digital input ELOP II Factory Programming tool for HIMatrix systems EMC Electromagnetic compatibility EN European norm ESD Electrostatic discharge FB Fieldbus FBB Fieldbus FBB Fieldbus FBD Function block diagrams FTT Fault tolerance time Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective earth ov voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that fwo input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. RW Read/write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System rack slot addressing of a module W Write: System variable/signal is provided with value, e.g., from the user program Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state. WDT	Term	Description
Al Analog input AO Analog output COM Communication module CRC Cyclic redundancy check DI Digital input DO Digital input ELOP II Factory Programming tool for HIMatrix systems EMC Electromagnetic compatibility EN European norm ESD Electrostatic discharge FB Fieldbus FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PES Protective earth PELV Protective earth ow voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. RW Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module W Write: System variable/signal is provided with value, e.g., from the user program fpp Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.		
ACO COM Communication module CRC Cyclic redundancy check DI Digital input DO Digital output ELOP II Factory Electromagnetic compatibility EN European norm ESD Electrostatic discharge FB Fieldbus FBD Function block diagrams FTT Fault tolerance time ICMP International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworx or ELOP II Factory PES PR R Read: The system variable or signal provides value, e.g., to the user program Rack ID Interference-free Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variables) SILU Safety integrity level (in accordance with IEC 61508) SILWorX Programming tool for HilMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module W Write: System variable/signal is provided with value, e.g., from the user program FIPP Peak-to-peak value of a total AC component Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	AIXI	hardware addresses
COM Cyclic redundancy check DI Digital input DO Digital output ELOP II Factory Programming tool for HIMatrix systems EMC Electromagnetic compatibility EN European norm ESD Electrostatic discharge FB Fieldbus FBD Function block diagrams FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective earth Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILWorX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program Frp Peak-to-peak value of a total AC component Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	Al	Analog input
CRC Cyclic redundancy check DI Digital input DO Digital output ELOP II Factory Programming tool for HIMatrix systems EMC Electromagnetic compatibility EN European norm ESD Electrostatic discharge FB Fieldbus FBD Function block diagrams FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX e ILOP II Factory PE Protective earth PELV Protective earth PELV Protective earth ow voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is ter	AO	Analog output
DI Digital input DO Digital output ELOP II Factory Programming tool for HIMatrix systems EMC Electromagnetic compatibility EN European norm ESD Electrostatic discharge FB Fieldbus FBD Function block diagrams FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective earth PELV Protective earth Rack ID Base plate identification (number) Interference-free Usupposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. RW Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program FpP Peak-to-peak value of a total AC component Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	COM	Communication module
DO Digital output ELOP II Factory Programming tool for HIMatrix systems EMC Electromagnetic compatibility EN European norm ESD Electrostatic discharge FB Fieldbus FBD Function block diagrams FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective extra low voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit circuit is termed interference-free if it does not distort the signals of the other input circuit. RW Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program frep Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	CRC	Cyclic redundancy check
ELOP II Factory Programming tool for HIMatrix systems EMC Electromagnetic compatibility EN European norm ESD Electrostatic discharge FB Fieldbus FBD Function block diagrams FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective extra low voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. RW Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILWORX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program FiPP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	DI	Digital input
EMC Electromagnetic compatibility EN European norm ESD Electrostatic discharge FB Fieldbus FBD Function block diagrams FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective earth ow voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuit is termed interference-free if it does not distort the signals of the other input circuit. RW Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SM Software TMO Timeout W Wirte: System variable/signal is provided with value, e.g., from the user program Fpp Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	DO	Digital output
EN European norm ESD Electrostatic discharge FB Fieldbus FBD Function block diagrams FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective earth PELV Protective extra low voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HilMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program Fpp Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	ELOP II Factory	Programming tool for HIMatrix systems
ESD Electrostatic discharge FB Fieldbus FBD Function block diagrams FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective earth PELV Protective extra low voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W W Write: System variable/signal is provided with value, e.g., from the user program Fpp Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	EMC	Electromagnetic compatibility
FB Fieldbus FBD Function block diagrams FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective earth PELV Protective earth PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program Tpp Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	EN	European norm
FBD Function block diagrams FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective extra low voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	ESD	Electrostatic discharge
FTT Fault tolerance time ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective extra low voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program ripp Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	FB	Fieldbus
ICMP Internet control message protocol: Network protocol for status or error messages IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3),	FBD	Function block diagrams
IEC International electrotechnical commission MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective extra low voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program In pe Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	FTT	Fault tolerance time
MAC address Media access control address: Hardware address of one network connection PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective extra low voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program	ICMP	Internet control message protocol: Network protocol for status or error messages
PADT Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory PE Protective earth PELV Protective extra low voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program FPP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	IEC	International electrotechnical commission
PC with SILworX or ELOP II Factory PE Protective earth PELV Protective extra low voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program FPP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	MAC address	Media access control address: Hardware address of one network connection
PELV Protective extra low voltage PES Programmable electronic system R Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program fpp Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	PADT	Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory
PES Programmable electronic system Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program r_PP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	PE	Protective earth
Read: The system variable or signal provides value, e.g., to the user program Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program FPP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	PELV	Protective extra low voltage
Rack ID Base plate identification (number) Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program Image: representation of the program of	PES	Programmable electronic system
Interference-free Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed interference-free if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program FPP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	R	Read: The system variable or signal provides value, e.g., to the user program
transmitter). An input circuit is termed <i>interference-free</i> if it does not distort the signals of the other input circuit. R/W Read/Write (column title for system variable/signal type) SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program f_PP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	Rack ID	Base plate identification (number)
SELV Safety extra low voltage SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	Interference-free	transmitter). An input circuit is termed <i>interference-free</i> if it does not distort the signals
SFF Safe failure fraction, portion of faults that can be safely controlled SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	R/W	Read/Write (column title for system variable/signal type)
SIL Safety integrity level (in accordance with IEC 61508) SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program r_PP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	SELV	Safety extra low voltage
SILworX Programming tool for HIMatrix systems SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program r_PP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	SFF	Safe failure fraction, portion of faults that can be safely controlled
SNTP Simple network time protocol (RFC 1769) SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program r_PP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	SIL	Safety integrity level (in accordance with IEC 61508)
SRS System.rack.slot addressing of a module SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program r_PP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	SILworX	Programming tool for HIMatrix systems
SW Software TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program r_PP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	SNTP	Simple network time protocol (RFC 1769)
TMO Timeout W Write: System variable/signal is provided with value, e.g., from the user program r_PP Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	SRS	System.rack.slot addressing of a module
Write: System variable/signal is provided with value, e.g., from the user program Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	SW	Software
Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	TMO	Timeout
Peak-to-peak value of a total AC component Watchdog (WD) Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.	W	Write: System variable/signal is provided with value, e.g., from the user program
module or program enters the ERROR STOP state.	r _{PP}	Peak-to-peak value of a total AC component
WDT Watchdog time	Watchdog (WD)	
	WDT	Watchdog time

HI 800 345 E Rev. 2.00 Page 43 of 48

Appendix F3 DIO 20/8 02

Index of	Figures	
Figure 1:	Connections to Safety-Related Digital Inputs	11
Figure 2:	Line Control	12
Figure 3:	Connection of Actuators to Digital Outputs	13
Figure 4:	Sample Type Label	16
Figure 5:	Front View	17
Figure 6:	Block Diagram	17
Figure 7:	Sample MAC Address Label	20
Figure 8:	Label for Ex Conditions	28

Page 44 of 48 HI 800 345 E Rev. 2.00

F3 DIO 20/8 02 Appendix

Index of	Tables	
Table 1:	Programming Tools for HIMatrix Remote I/Os	5
Table 2:	Additional Relevant Documents	6
Table 3:	Environmental Requirements	9
Table 4:	Available Variants	15
Table 5:	Operating Voltage LED	18
Table 6:	System LEDs	18
Table 7:	Ethernet Indicators	19
Table 8:	I/O LEDs	19
Table 9:	Ethernet Interfaces Properties	20
Table 10:	Network Ports in Use	20
Table 11:	Product Data	22
Table 12:	Specifications for Digital Inputs	22
Table 13:	Specifications for the Digital Outputs	22
Table 14:	Product Data F3 DIO 20/8 021 (-20 °C)	23
Table 15:	Product Data of F3 DIO 20/8 023	23
Table 16:	Product Data of F3 DIO 20/8 024	23
Table 17:	Certificates	24
Table 18:	Terminal Assignment for the Digital Inputs	26
Table 19:	Terminal Assignment for the Digital Outputs	26
Table 20:	Power Supply Cable Plug Properties	27
Table 21:	Input and Output Cable Plug Properties	27
Table 22:	SILworX - System Parameters for Digital Inputs, Module Tab	30
Table 23:	SILworX - System Parameters for Digital Inputs, DI 20: Channels Tab	31
Table 24:	SILworX - System Parameters for Digital Outputs, Module Tab	32
Table 25:	SILworX - System Parameters for Digital Outputs, DO 8: Channels Tab	33
Table 26:	ELOP II Factory - Digital Input System Signals	36
Table 27:	ELOP II Factory - Digital Output System Signals	37

HI 800 345 E Rev. 2.00 Page 45 of 48

Appendix F3 DIO 20/8 02

Index

block diagram	17	reset key	21
diagnosis			
fault reaction		safety function	
digital inputs	12		
digital outputs			
front view			
line control		U	

HIMA Paul Hildebrandt GmbH + Co KG P.O. Box 1261 68777 Brühl, Germany

Phone: +49 6202 709-0 Fax: +49 6202 709-107