APPLICATION MANUAL

Logic relays

CL range

Warning! Dangerous electrical voltage!

Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Earth and short circuit.
- Cover or enclose neighbouring units that are live.
- Follow the operating and installation instructions of the device concerned.
- Only suitably qualified personnel in accordance with EN 50110-1/-2 (VDE 0105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE) must be connected to the protective earth (PE) or to the potential equalisation. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed in such a way that inductive or capacitive interference does not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.
- Suitable safety hardware and software measures should be implemented for the I/O interface so that a line or wire breakage on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the low voltage for the 24 volt supply. Only use power supply units complying with IEC 60364-4-41 (VDE 0100 Part 410) or HD 384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause restart.
- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.
- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergencystop devices should be implemented.
- Wherever faults in the automation system may cause damage to persons or property, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).

Table of Contents

About this manual 9
Device designation 9
Reading conventions 10
1 Logic relay 11
Intended users 11
Proper use 11

- Improper use 11
Overview 12
Device overview 14
CL operating principles 16
- Keypad 16
- Selecting menus and entering values 16
- Selecting main and system menu 17
- Status display logic relay 18
- Status display for local expansion 18
- Advanced status display 19
- CL-LED display 19
- Menu structure 20
- Selecting or toggling between menu items 25
- Cursor display 25
- Set value 25
2 Installation 27
Mounting 27
Connecting the expansion device 30
Terminals 31
- Tools 31
- Cable cross-sections 31
Connecting the power supply 31
- Cable protection 31
- Supplying AC units 32
- Supplying DC units 33
Connecting the inputs 35
- Connect digital AC inputs 35
- Connect digital DC inputs 40
- Connect analog DC inputs 41
- Connecting high-speed counters and frequency generators 46
Connecting outputs 48
- Connect relay outputs 49
- Connecting transistor outputs 51
Expanding inputs/outputs 54
- Local expansion 54
- Remote expansion 55
3 Commissioning 57
Switching on 57
Setting the menu language 58
CL operating modes 59
Creating your first circuit diagram 60
- Circuit diagram display 62
- From the first contact to the output coil 63
- Wiring 64
- Testing the circuit diagram 65
- Deleting the circuit diagram 67
- Fast circuit diagram entry 67
4 Wiring with the logic relay 69
CL operation 69
- Buttons for editing circuit diagrams and function relays 69
- Operating principles 70
- Relays, function relays 74
- Saving and loading circuit diagrams 76
Working with contacts and relays 77
- Input and output contacts 77
- Creating and modifying connections 80
- Inserting and deleting a rung 82
- Switching with the cursor buttons 82
- Checking the circuit diagram 84
- Coil functions 85
Function relays 91
- Example function relay with timer and counter relay 93
Analog value comparator/threshold value switch 98
- Circuit diagram display with analog value comparator 99
- Compatibility of AC010 devices with logic relays 101
- Parameter display in RUN mode 102
- Resolution of the analog inputs 102
- Function of the analog value comparator function relay 103
Counters 111
- Function of the counter function relay 115
High-speed counters, CL-DC1, CL-DC2 119
- Frequency counter 119
- High-speed counters 125
Text display 131
- Wiring a text display 132
- Retention 132
- Scaling 133
- Function 133
- Text entry 134
- Character set 134
- Entering a setpoint in a display 135
7-day time switch 137
- Parameter display and parameter set for 7-day time switch 138
- Changing time switch channel 139
- Function of the 7-day time switch 139
Operating hours counter 143
- Value range of the operating hours counter 144
- Accuracy of the operating hours counter 144
- Function of the operating hours counter function block 144
Timing relays 148
- Parameter display and parameter set for a timing relay 149
- Retention 150
- Timing relay modes 151
- Time range 151
- Function of the timing relay function block 154
- Examples timing relay 161
Jumps 164
- Function 164
- Power flow display 165
Year time switch 167
- Wiring of a year time switch 167
- Parameter display and parameter set for year time switch 168
- Changing time switch channel 169
- Entry rules 169
- Function of the year time switch 171
Master reset 174
- Operating modes 175
- Function of the master reset function relay 175
Basic circuits 176
- Negation (contact) 176
- Negation (coil) 177
- Maintained contact 177
- Series circuit 177
- Parallel circuit 178
- Parallel circuit operating like a series connection of n/o contacts 179
- Parallel circuit operating like a series connection of n / c contacts 180
- Two-way circuit 180
- Self-latching 181
- Impulse relay 182
- Cycle pulse on rising edge 182
- Cycle pulse on falling edge 183
Circuit examples 184
- Star-delta starting 184
- $4 x$ shift register 186
- Running light 190
- Stairwell lighting 191
5 CL settings 195
Password protection 195
- Password setup 196
- Selecting the scope of the password 197
- Activating the password 198
- Unlock logic relay 199
Changing the menu language 201
Changing parameters 202
- Adjustable parameters for function relays 203
Setting date and time 205
- Setting the time 205
- Setting summer time start and end 206
- Selection of summer time start and end 207
- Summer time start and end, setting the rule 207
Activating input delay (debounce) 214
- Activating debounce (input delay) 215
- Deactivating debounce (input delay) 215
Activating and deactivating the P buttons 215
- Activating the P buttons 216
- Function of the P buttons 216
- Deactivating the P buttons 216
Startup behaviour 217
- Setting the startup behaviour 217
- Behaviour when the circuit diagram is deleted 218
- Behaviour during upload/download to memory module or PC 218
- Possible faults 218
- Startup behaviour for memory module 219
Setting the cycle time 220
Retention (non-volatile data storage) 221
- Permissible markers and function relays 221
- Setting retentive behaviour 222
- Deleting retentive actual values 223
- Transferring retentive behaviour 223
- Changing the operating mode or the circuit diagram 224
- Changing the startup behaviour in the SYSTEM menu 224
Displaying device information 225
6 Inside the logic relay 227
Logic relay circuit diagram cycle 227
- CL operation and implications for circuit diagram creation 228
Delay times for inputs and outputs 230
- Delay times with CL-DC1 and CL-DC2 basic units 230
- Delay time with CL-AC1 and CL-AC2 basic units 232
- Delay times for the analog inputs CL-AC1, CL-DC1 and CL-DC2 233
Monitoring of short-circuit/ overload with CL-LST, CL-LMT and CL-LET 234
Expanding CL-LMR/CL-LMT 235
- How is an expansion unit recognised? 235
- Transfer behaviour 235
- Function monitoring of expansion units 236
Saving and loading circuit diagrams 237
- CL-LSR..X.../CL-LST..X....
CL-LMR..X.../CL-LMT..X... 237
- Interface 238
Memory module 239
- Compatibility of memory modules MD001 and MD002 239
- Loading or saving circuit diagrams 240
CL-SOFT 243
Logic relay with separate display module 244
Device version 245
7 What happens if ...? 247
Messages from the CL system 247
Possible situations when creating circuit diagrams 248
Event 250
Appendix 251
Dimensions 251
Technical data 254
- General 254
- Special approvals 256
- Power supply 257
- Inputs 258
- Relay outputs 265
- Transistor outputs 267
List of the function relays 270
- Usable contacts 270
- Available function relays 271
- Names of relays 271
- Names of function relay 272
- Name of function block inputs (constants, operands) 272
Compatibility of the function relay parameters 273
- Parameter display of analog value comparator 273
- Parameter display of counters 273
- Parameter display 7-day time switch 274
- Parameter display of timing relay 274
- Compatibility of the memory module 274
Glossary 275
Index 279

About this manual

This manual describes the installation, commissioning and programming (circuit diagram generation) of the logic relays CL-LSR/CL-LST and CL-LMR/CL-LMT.

Specialist electrical training is needed for commissioning and creating circuit diagrams. When controlling active components such as motors or pressure cylinders, parts of the system can be damaged and persons put at risk if the logic relay is connected or programmed incorrectly.

Device designation

This manual uses the following abbreviated designations for different device models:

CL-LSR/CL-LST for
CL-LSR...12AC1, CL-LSR...12AC2, CL-LSR...12DC1, CL-LSR...12DC2 and CL-LST...12DC2

CL-LMR/CL-LMT for
CL-LMR...18AC1, CL-LMR...18AC2, CL-LMR...18DC1,
CL-LMR...18DC2 and CL-LST...20DC2
CL-AC1 for
CL-LSR...12AC1
CL-LMR...18AC1
CL-AC2 for
CL-LSR...12AC2
CL-LER.18AC2 and CL-LMR...18AC2
CL-DC1 for
CL-LSR...12DC1
CL-LMR...18DC1
CL-DC2 for
CL-LSR...12DC2, CL-LST...12DC2
CL-LMR...18DC2, CL-LMT...20DC2,
CL-LER.18DC2 and CL-LET.20DC2
CL-LE... for
CL-LER.20, CL-LEC.CI000, CL-LER.18AC2, CL-LER.18DC2 and CL-LER.20DC2

Reading conventions Symbols used in this manual have the following meanings: - indicates actions to be taken.

Attention!

Warns of the risk of material damage.

Caution!

Warns of the possibility of serious damage and slight injury.

Warning!

Indicates the risk of major damage to property, or serious or fatal injury.

Draws your attention to interesting tips and supplementary information.

For greater clarity, the name of the current chapter is shown in the header of the left-hand page and the name of the current section in the header of the right-hand page. This does not apply to pages at the start of a chapter and empty pages at the end of a chapter.

1 Logic relay

Intended users The logic relay must only be installed and wired up by trained electricians or other persons familiar with the installation of electrical equipment.

Specialist electrical training is needed for commissioning and creating circuit diagrams. When controlling active components such as motors or pressure cylinders, parts of the system can be damaged and persons put at risk if the logic relay is connected or programmed incorrectly.

Proper use

The logic relay is a programmable switching and control device and is used as a replacement for relay and contactor control circuits. The logic relay must be properly installed before use.

- The logic relay is designed to be installed in an enclosure, switch cabinet or distribution board. Both the power feed and the signal terminals must be laid and covered so as to prevent accidental contact.
- The installation must comply with regulations for electromagnetic compatibility (EMC).
- The power up of the logic relay must not cause any hazards arising from activated devices, such as unexpected motor startups or power ups.

Improper use

The logic relay should not be used as a substitute for safety-related controls such as burner or crane controls, emergency-stop or two-hand safety controls.

Overview

Figure 1: CL basic units and expansions
Legend for figure 1:
(1) CL-LSR/CL-LST logic relays
(2) CL-LER, CL-LET input/output expansion
(3) CL-LER. 20 output expansion
(4) Coupler unit for CL-LEC.CIOOO remote expansion
(5) CL-LINK CL-LAS.TK011 data plug
(6) CL-LMR/CL-LMT logic relays

The logic relay is an electronic control relay with logic functions, timer, counter and time switch functions. It is also a control and input device rolled into one. With the logic relay you can create solutions for domestic applications as well as for tasks in machine and plant construction.

Circuit diagrams are connected up using ladder diagrams, and each element is entered directly via the CL display.

For example, you can:

- Connect n / o and n / c contacts in series and in parallel
- Connect output relays and markers,
- Use outputs as relays, impulse relays or latching relays
- Use multi-function timing relays with different functions
- Use up and down counters
- Count high-speed counter pulses
- Measure frequencies
- Process analog inputs, CL-AC1, CL-DC1, CL-DC2, (CL-LSR/CL-LST: two analog inputs, CL-LMR/CL-LMT: four analog inputs)
- Display any texts with variables, enter setpoints
- Use year time switches, 7-day time switches CL-...C(X)...
- Count operating hours (four retentive operating hours counters integrated)
- Track the flow of current in the circuit diagram
- Load, save and password-protect circuit diagrams

To wire the logic relay via your PC use the CL-SOFT programming software. This software is used to create and test your circuit diagram on the PC. CL-SOFT enables you to print out your circuit diagram in DIN, ANSI or CL format.

Device overview
 CL basic units at a glance

Figure 2: Device overview
(1) Supply voltage
(2) Inputs
(3) Operating status LED
(4) Keypad
(5) Interface for memory module or PC connection
(6) Outputs
(7) Display

Logic relay with remote display CL-LDD..., CL-LDC.S...

Figure 3: Device overview with remote display
(1) CL-LSR/CL-LST logic relays
(2) CL-LMR/CL-LMT logic relays
(3) Display module CL-LDD...
(4) Remote display connection module CL-LDC.S... with connection cable

CL operating principles Keypad

Selecting menus and entering values

ヘン Change menu item Change value
< > Change place
P buttons function:
$\begin{array}{llll}> & \text { Input P1 } & \text { Input P2 } \\ > & \text { Input P3 } & \vee & \text { Input P4 }\end{array}$

Selecting main and system menu

Status display

1st menu level Main menu

1st menu level
System menu CL-LSR/CL-LST or CL-LMR/CL-LMT

[^0]Toggling between weekday, time display and date display
(only on devices with clock)

Status display logic relay

CL-LSR/CL-LST: input 1 to 8, CL-LMR/CL-LMT: input 1 to 12

CL-LSR/CL-LST: output 1 to 4,
CL-LMR/CL-LMT: output 1 to 6 or 8
On: 1, 2, 3, 4/Off:...

Status display for local expansion

Advanced status display

FE : Retention switched on
I : Debounce switched on
FIC: AC expansion functioning correctly
[II: DC expansion functioning correctly
Gul : Bus coupling module detected GW flashing: Only CL-LEC.CI000 detected. I/O expansion not detected.
17.03.04 Display of actual device date

ET : When the power supply is switched on, the logic relay switches to STOP mode

CL-LED display

CL-LSR.CX..., CL-LST.CX..., CL-LMR/CL-LMT, CL-LER and CL-LET feature an LED on the front which indicates the status of the power supply as well as the RUN or STOP mode (\rightarrow figure 2, Page 14).

LED OFF		No power supply
LED continuously lit	Power supply present, STOP mode	

Menu structure

Main menu without password protection

- You access the main menu by pressing OK.

Main menu
STOP: Circuit diagram display
RUN: Power flow display

Main menu

Main menu with password protection

System menu CL

The system menu is accessed by simultaneously pressing DEL and ALT.

Password setup

System menu

Selecting or toggling between menu items

Cursor＾\vee

Select or toggle

Cursor display

HH：惏 喵4：23

YEAF 20日

```
HH:灲 14:2:
```



```
YEFF 20प4
```

The cursor flashes．
Full cursor 輻：
－Move cursor with＜＞，
－in circuit diagram also with \wedge
Value ll / M
－Change position with＜＞
－Change values with \wedge
Flashing values／menus are shown in grey in this manual．

Set value

Select value＾\vee
Select digit＜＞
Change value at digit

Store entry
OK
Retain previous value

2 Installation

The logic relay must only be installed and wired up by trained electricians or other persons familiar with the mounting of electrical equipment.

Danger of electric shock
Never carry out electrical work on the device while the power supply is switched on.

Always follow the safety rules:

- Switch off and isolate
- Secure against reclosing
- Ensure that the device is no longer live
- Cover adjacent live parts

The logic relay is installed in the following order:

- Assemble devices if necessary
- Mounting
- Wiring up the inputs
- Wiring up the outputs
- Connecting the power supply

Mounting

Install the logic relay in a control cabinet, service distribution board or in an enclosure so that the power feed and terminal connections cannot be touched accidentally during operation.

Fit the logic relay on a top-hat rail in accordance with DIN EN 50022 or fasten the logic relay with fixing brackets. The logic relay can be mounted either vertically or horizontally. the expansion concerned before mounting (\rightarrow page 30).

For ease of wiring, leave a gap of at least 30 mm between the terminals and the wall or adjacent devices.

Figure 4: Clearances from the logic relay

Mounting on top-hat rail

- Place the logic relay diagonally on the upper lip of the top-hat rail. Slightly push the device down and against the top-hat rail until it also snaps onto the bottom lip of the rail.
The logic relay will clip into place and will be secured by the built-in spring mechanism.
- Check that the device is seated firmly.

The device is mounted vertically on a top-hat rail in the same way.

Mounting

Screw mounting

Fixing brackets that can be inserted on the rear of the logic relay are required for screw mounting. The fixing brackets are available as an accessory.

CL-LMR/CL-LMT: Fasten each device with at least three fixing brackets.

Figure 5: Screw mounting

Connecting the expansion device

Figure 6: Connecting expansion units

- Open the CL-LINK connections on the side of both CL devices.
- Fit the CL-LINK data plug CL-LAS.TK011 in the opening provided on the expansion device.
- Plug the devices together.
- Proceed in the reverse order to dismantle the device.

Terminals Tools

Slot-head screwdriver, width 3.5 mm , tightening torque 0.6 Nm .

Cable cross-sections

- Solid: 0.2 to $4 \mathrm{~mm}^{2}$
- Flexible with ferrule: 0.2 to 2.5 mm 2

Connecting the power supply

\rightarrow
The required connection data for device types CL-AC1 with the voltage $24 \mathrm{~V} \mathrm{AC}, \mathrm{CL-AC2} \mathrm{with} \mathrm{the} \mathrm{standard}$ voltage of 100 V to 240 V AC , CL-DC1 with the voltage 12 V DC and CL-DC2 with 24 V DC is provided in section "Technical data", Page 254.

The CL-LSR/CL-LST and CL-LMR/CL-LMT logic relays perform a two-second system test after the power supply voltage is applied. Either RUN or STOP mode will be activated after these two seconds, depending on the default setting.

Cable protection

The logic relay requires cable protection (F1) rated for at least 1 A (slow).

Supplying AC units

Supplying AC basic units

CL-LSR...12AC1,CL-LMR...18AC1,
CL-LSR...12AC2,CL-LMR...18AC2

Figure 7: Supply voltage to $A C$ basic unit

Supplying AC basic units

CL-LER.18AC2

Figure 8: Supply voltage to $A C$ basic unit

Applies to CL-AC devices with a power supply greater than 24 V AC:

- The voltage terminals for phase L and neutral conductor N have been reversed.
- This enables the CL interface (for memory module or PC connection) to have the full connection voltage of the phase conductor L (100 to 240 V AC).
- There is a danger of electric shock if the CL interface is not properly connected or if conductive objects are inserted into the socket.

Attention!

A short current surge will be produced when switching on for the first time. Do not switch on the logic relay with reed contacts because these could possibly burn or stick.

Supplying DC units

Supplying DC basic units

CL-LSR...12DC1, CL-LMR...18DC1, CL-LSR...12DC2, CL-LMR...18DC2

Figure 9: Supply voltage to DC basic unit

Supplying DC expansion devices

 CL-LER.18DC2, CL-LER.20DC2

Figure 10: Supply voltage to DC expansion unit

CL-DC1 and CL-DC2 are protected against reverse polarity. Ensure the correct polarity of the terminals to ensure that the logic relay functions correctly.

Cable protection

The logic relay requires cable protection (F1) rated for at least 1 A (slow).

When the CL device is switched on for the first time, its power supply circuit behaves like a capacitor. Ensure that reed relay contacts or proximity switches are not used as the switching device for switching on the power supply.

Connecting the inputs The inputs of the logic relay switch electronically. Once you have connected a contact via an input terminal, you can reuse it as a contact in your CL circuit diagram as often as you like.

Figure 11: Connecting the inputs
Connect to the logic relay input terminals contacts such as pushbuttons, switches, relay or contactor contacts, proximity switches (three-wire).

Connect digital AC inputs

Caution!

Connect the inputs for AC devices in compliance with the safety regulations of the VDE, IEC, UL and CSA. The same phase conductor to which the device power supply is connected should be used for the supply of the inputs. The logic relay will otherwise not detect the switching level or may be destroyed by overvoltage.

Connect digital AC inputs to the basic unit

Figure 12: Connect digital inputs CL-AC1 and CL-AC2

Connect digital AC inputs to the expansion unit

Figure 13: Connect digital inputs CL-LER.18AC2

Table 1: Input signal values CL-AC1

		Voltage range of the input signals		Input current
		OFF signal	ON signal	
$\begin{aligned} & \hline \text { CL-LSR/ } \\ & \text { CL-LMR } \end{aligned}$	11 to I6	0 to 6 V AC	14 to 26.4 V AC	4 mA at 24 V AC
	17, 18		greater than 7 V AC or greater than 9.5 V DC	2 mA with 24 V AC and 24 V DC
CL-LMR	19, 110		14 to 26.4 V AC	4 mA at 24 VAC
	17, 18		greater than 7 V AC or greater than 9.5 V DC	2 mA with 24 V AC and 24 V DC

Table 2: Input signal values CL-AC2

		Voltage range of the input signals		Input current
		OFF signal	ON signal	
$\begin{aligned} & \text { CL-LSR/ } \\ & \text { CL-LMR } \end{aligned}$	11 to I6	0 to 40 V	79 to 264 V	$\begin{aligned} & 0.5 \mathrm{~mA} \text { at } 230 \mathrm{~V} \mathrm{ACl} \\ & 0.25 \mathrm{~mA} \text { at } 115 \mathrm{~V} \mathrm{AC} \end{aligned}$
	17, 18			$\begin{aligned} & 6 \mathrm{~mA} \text { at } 230 \mathrm{VAC} / 4 \mathrm{~mA} \\ & \text { at } 115 \mathrm{~V} \end{aligned}$
CL-LMR	11 to I6			0.5 mA at $230 \mathrm{~V} \mathrm{AC/}$
CL-LER/	R1 to			0.25 mA at 115 V AC
CL-LET	R12			

Cable lengths
Severe interference can cause a " 1 " signal on the inputs without a proper signal being applied. Observe therefore the following maximum cable lengths:

11 to I6	40 m without additional circuit
17, 18	100 m without additional circuit
11 to 16	40 m without additional circuit
R1 to R12	

With longer cables you can, for example, connect a 1 A diode (e.g. 1N4007) with a blocking voltage of at least 1000 V in series with the CL input. Ensure that the diode is connected in relation to the input as shown in the circuit diagram, otherwise the logic relay will not detect the 1 signal.

Figure 14: AC input with suppression diode for CL-AC1 and CL-AC2

CL-AC2:

Inputs 17 and 18 on the CL-AC2 have a high input current. Neon bulbs with a maximum residual current of $2 \mathrm{~mA} / 1 \mathrm{~mA}$ at $230 \mathrm{~V} / 115 \mathrm{~V}$ can be connected to 17 and I 8 .

Always use neon bulbs that are operated with a separate N connection.

Caution!

Do not use reed relay contacts at 17 , 18 . These may burn or melt due to the high inrush current of 17,18 .

Two-wire proximity switches have a residual current in the " 0 " state. If this residual current is too high, the logic relay input may only detect a " 1 " signal.

Use therefore the inputs 17 , 18 . An additional input circuit is required if more inputs are needed.

Increasing the input current

The following input circuit can be used in order to prevent interference and also when using two-wire proximity switches:

Figure 15: Increasing the input current
$\rightarrow \quad \begin{aligned} & \text { When using a } 100 \mathrm{nF} \text { capacitor, the drop-out time of the } \\ & \text { input increases by } 80 \text { (66.6) ms at } 50(60) \mathrm{Hz} \text {. }\end{aligned}$
A resistor can be connected in series with the circuit shown in order to restrict the inrush current.

Figure 16: Limitation of the input current with a resistor
$\longrightarrow \quad \begin{aligned} & \text { The increased capacitance increases the drop-off time by } \\ & \text { approx. } 40 \mathrm{~ms} .\end{aligned}$

Connect digital DC inputs

Use input terminals 11 to I12, R1 to R12 to connect pushbutton actuators, switches or 3 or 4-wire proximity switches. Given the high residual current, do not use 2-wire proximity switches.

Connect digital DC inputs to the basic unit

Figure 17: Connect digital inputs CL-DC1 and CL-DC2

Connect digital DC inputs to the expansion unit

CL-LE...DC2
Figure 18: Connect digital inputs CL-LER.18DC2, CL-LET.20DC

Table 3: Input signal values CL-DC2

		Voltage range of the input signals		Input current
		OFF signal	ON signal	
$\begin{aligned} & \hline \text { CL-LSR/ } \\ & \text { CL-LST/ } \\ & \text { CL-LMR/ } \\ & \text { CL-LMT } \end{aligned}$	11 to I6	0 to 5 V	15 to 28.8 V	3.3 mA at 24 V DC
	17, 18		greater than 8 V DC	2.2 mA at 24 V
$\begin{aligned} & \text { CL-LMR/ } \\ & \text { CL-LMT } \end{aligned}$	19, 110		15 to 28.8 V	3.3 mA at 24 V DC
	17, 18		greater than 8 V DC	2.2 mA at 24 V
$\begin{aligned} & \text { CL-LER/ } \\ & \text { CL-LET } \end{aligned}$	$\begin{aligned} & \text { R1 to } \\ & \text { R12 } \end{aligned}$		15 to 28.8 V	3.3 mA at 24 V DC

Table 4: Input signal values CL-DC1

| | Voltage range of the input signals
 OFF signal | | ON signal |
| :--- | :--- | :--- | :--- | :--- |

Connect analog DC inputs

The CL-AC1, CL-AC2 and CL-DC2 basic units are provided with analog inputs. Inputs 17 and I8, and if present I11 and 112 , can be used to connect analog voltages ranging from 0 V to 10 V . A simple additional circuit also allows the analog evaluation of currents from 0 to 20 mA . The analog input signals are converted to 10 -bit digital signals.

The following signals apply:

- 0 V DC corresponds to a digital 0.
- 5 V DC corresponds to a digital value of 512 .
- 10 V DC corresponds to a digital value of 1023 .

Caution!

Analog signals are more sensitive to interference than digital signals. Consequently, greater care must be taken when laying and connecting the signal lines.

Incorrect switching states may occur if they are not connected correctly.

Safety measures with analog signals

- Use shielded twisted pair cables to prevent interference with the analog signals.
- With short cable lengths, ground the shield at both ends using a large contact area. If the cable length is more than around 30 m , grounding at both ends can result in equalisation currents between the two grounding points and thus in the interference of analog signals. In this case, only ground the cable at one end.
- Do not lay signal cables parallel to power cables.
- Connect inductive loads to be switched via the logic relay outputs to a separate power feed, or use a suppressor circuit for motors and valves. If loads such as motors, solenoid valves or contactors are operated via the same power feed, switching may give rise to interference on the analog input signals.

The following four circuits contain examples of applications for analog value processing.

Caution!

Ensure that the reference potential is connected. Connect the 0 V of the power supply unit for the different setpoint potentiometers and sensors shown in the examples to the 0 V and neutral conductor terminal (CL-AC1) of the logic relay power feed. Otherwise incorrect switching states may occur if they are not connected correctly.

Power supply of CL-AC1 devices and analog inputs

 With CL-AC1 devices that process analog signals, the device must be fed via a transformer so that the device is isolated from the mains supply. The neutral conductor and the reference potential of the DC power feed of analog sensors must be electrically connected.Ensure that the common reference potential is grounded or monitored by a ground fault monitoring device. Observe the requirements of the relevant regulations.

Figure 19: CL-AC1 analog input, connection of reference potentials

Analog setpoint potentiometer, CL-AC1,CL-DC1,CL-DC2

Figure 20: Analog setpoint potentiometer with own power feed

Use a potentiometer with a resistance of $\leqq 1 \mathrm{k} \Omega$, e. g. $1 \mathrm{k} \Omega$, 0.25 W .

Analog setpoint potentiometer CL-DC2

Figure 21: Analog setpoint potentiometer with 24 V DC power feed

Brightness sensor CL-AC1, CL-DC1, CL-DC2

Figure 22: Connection of a brightness sensor, analog input

Temperature sensor, CL-DC1, CL-DC2

Figure 23: Connection of the temperature sensor, analog input

20 mA sensor

4 to $20 \mathrm{~mA}(0$ to 20 mA) sensors can be connected easily without any problem using an external 500 V resistor.

Figure 24: Connection 0 (4) to 20 mA sensor output, analog input
Analog sensor
The following values apply:

- $4 \mathrm{~mA}=1.9 \mathrm{~V}$
- $4 \mathrm{~mA}=1.9 \mathrm{~V}$
- $20 \mathrm{~mA}=9.5 \mathrm{~V}$
(Based on $U=R \times I=478 \Omega \times 10 \mathrm{~mA} \sim 4.8 \mathrm{~V}$).

Connecting high-speed counters and frequency generators

High-speed counter signals and frequencies on the CL-DC1 and CL-DC2 can be counted accurately on inputs I1 to I4 independently of the cycle time. These inputs are permanently assigned to counters.

The coils and contacts have the following meanings:

- I1 = C13 high-speed up/down counter
- 12 = C14 high-speed up/down counter
- $13=$ C15 frequency counter
- $13=$ C15 frequency counter

Pulse shape of count signals:
the logic relay processes square wave signals.
Mark-to-space ratio of count signals:
We recommend a mark-to-space ratio of 1:1.
If this is not the case:
The minimum pulse or pause duration is 0.5 ms .

$$
\begin{aligned}
& t_{\min }=0.5 \times\left(1 / f_{\max }\right) \\
& t_{\min }=\text { minimum time of the pulse or pause duration } \\
& f_{\max }=\text { maximum count frequency }(1 \mathrm{kHz})
\end{aligned}
$$

Figure 25: Connecting high-speed counters and frequency generators

Inputs that are used as high-speed counter inputs should not be used in the circuit diagram as contacts. If the counter frequency is high:

Not all the high-speed counter signals will be measured for processing in the circuit diagram. The logic relay will only process randomly detected signals in the circuit diagram.

Connecting outputs
 The Q outputs operate inside the CL as isolated contacts.

Figure 26: Output Q
The associated relay coils are controlled in the CL circuit diagram via the following outputs.

- Q1 to Q4 and Q1 to Q8 (Q6), basic units
- S1 to S8 (S6), expansion devices

The signal states of the outputs can be used in the CL circuit diagram as n/o or n/c contacts for other switching conditions.

The relay or transistor outputs are used to switch loads such as fluorescent tubes, filament bulbs, contactors, relays or motors. Prior to installation observe the technical limit values and data for the outputs (\rightarrow section "Technical data", Page 254).

Connect relay outputs

CL-LSR

Figure 27: Relay outputs CL-LSR

CL-LMR and

$\leqq 8$ A/B 16

L1, L2, L3 (115/230 V ~)
$+24 \mathrm{~V}=$

CL-LER. 20

$\leqq 8 \mathrm{~A} / \mathrm{B} 16$
L1, L2, L3 (115/230 V ~)

$+24 \mathrm{~V}=$

Figure 28: Relay outputs CL-LMR and CL-LER. 20

CL-LER.18AC2, CL-LER.18DC2

Figure 29: Relay outputs CL-LER.18AC2, CL-LER.18DC2
Unlike the inputs, the outputs can be connected to different phases.

Caution!
Do not exceed the maximum voltage of 250 V AC on a relay contact.

If the voltage exceeds this threshold, flashover may occur at the contact, resulting in damage to the device or a connected load.

Connecting transistor outputs

CL-LST

Figure 30: Transistor outputs CL-LST

CL-LMT

Figure 31: Transistor outputs CL-LMT

CL-LET.20DC2

Figure 32: Transistor outputs CL-LET.20DC2

Parallel connection:
Up to four outputs can be connected in parallel in order to increase the output power. This enables a maximum output current of 2 A .

Caution!

Outputs within a group (Q1 to Q4 or Q5 to Q8, S1 to S4 or S5 to S8) can be switched in parallel; e.g. Q1 and Q3 or Q5, Q7 and Q8. Outputs switched in parallel must be activated at the same time.

Caution!

Please note the following when switching off inductive loads.

Suppressed inductive loads cause less interference in the entire electrical system. For optimum suppression the suppressor circuits are best connected directly to the inductive load.

If inductive loads are not suppressed, the following applies: Several inductive loads should not be switched off simultaneously to avoid overheating the driver blocks in the worst possible case. If in the event of an emergency stop the +24 V DC power supply is to be switched off by means of a contact, and if this would mean switching off more than one controlled output with an inductive load, then you must provide suppressor circuits for these loads (see the following diagrams).

Figure 33: Inductive load with suppressor circuit

Behaviour with short-circuit/overload

A transistor output will switch off in the event of a shortcircuit or overload. The output will switch back on up to the maximum temperature after a cooling time that depends on the ambient temperature and the current level. If the fault condition persists, the output will keep switching off and on until the fault is corrected or until the power supply is switched off (\rightarrow section "Monitoring of short-circuit/ overload with CL-LST, CL-LMT and CL-LET", Page 234).

Expanding inputs/outputs You can add expansion units to the following CL models in order to increase the number of inputs and outputs:

Expandable CL basic units	Expansion units	
$\begin{aligned} & \hline \text { CL-LMR/ } \\ & \text { CL-LMT } \end{aligned}$	CL-LER.18...	115/230 V AC power supply - 12 AC inputs, - 6 relay outputs
		24 V DC power supply - 12 DC inputs, - 6 relay outputs
	CL-LET.20DC2	- 12 DC inputs, - 8 transistor outputs
	CL-LER. 20	2 relay outputs
	Special expansion units see current catalogue	

Local expansion

Local expansion units are connected directly next to the basic unit.

Connect the CL expansion unit via the CL-LINK connection.

CL-LINK

Figure 34: Connecting local expansion with CL basic unit

Warning!

The following electrical separation is implemented between the CL-LMR.C.../CL-LMT.C... basic unit and the expansion device (separation always in local connection of expansion unit)

- Basic isolation $400 \mathrm{~V} \mathrm{AC}(+10 \%)$
- Safe isolation $240 \mathrm{~V} \mathrm{AC}(+10 \%)$

Units may be destroyed if the value $400 \mathrm{VAC}+10 \%$ is exceeded, and may cause the malfunction of the entire system or machine!
\longrightarrow
The basic unit and expansion unit can be provided with different DC power supplies.

Remote expansion

Remote expansion units can be installed and run up to 30 m away from the basic unit.

Warning!

The two-wire or multi-core cable between units must have the necessary insulation voltage required for the installation environment concerned. In the event of a fault (ground leakage, short-circuit) serious damage or injury to persons may otherwise occur.

A cable such as NYM-0 with a rated operating voltage of $\mathrm{U}_{\mathrm{e}}=300 / 500 \mathrm{~V} \mathrm{AC}$ is normally sufficient.

Figure 35: Connecting remote expansion units to CL basic unit

The terminals "E+" and "E-" of the CL-LEC.CIOOO are protected against short-circuits and polarity reversal. Functionality is only ensured if " $E+$ " is connected with "E+" and "E-" with "E-".

3 Commissioning

Switching on

Before switching on, check that you have connected the power supply terminals and inputs correctly:

- 24 V AC version CL-AC1
- Terminal L: Phase conductor L
- Terminal N: Neutral conductor N
- Terminals I1 to I12:

Actuation via same phase conductor L

- 230 V AC version CL-AC2
- Terminal L: Phase conductor L
- Terminal N : Neutral conductor N
- Terminals I1 to I12, R1 to R12: Actuation via phase conductor L
- 12 V DC version:
- Terminal +12 V : voltage +12 V
- Terminal 0 V : voltage 0 V
- Terminals I1 to I12:

Actuation via same +12 V

- 24 V DC version:
- Terminal +24 V : voltage +24 V
- Terminal 0 V : voltage 0 V
- Terminals I1 to I12, R1 to R12:

Actuation via the same +24 V

If you have already integrated the logic relay into a system, secure any parts of the system connected to the working area to prevent access and ensure that no-one can be injured if, for example, motors start up unexpectedly.

Setting the menu language

When you switch on the logic relay for the first time, you will be asked to select the menu language.

ENGLISH $\quad /$

DEUTSOH FTHWNT: EFANOL

Use the cursor buttons \wedge or \vee to select the language required.

- English
- German
- French
- Spanish
- Italian
- Portuguese
- Dutch
- Swedish
- Polish
- Turkish
- Czech
- Hungarian

Press OK to confirm your choice and press ESC to exit the menu.
The logic relay will then switch to the status display.
You can change the language setting at a later date, $(\rightarrow$ section "Changing the menu language", Page 201).
If you do not set the language, the logic relay will display this menu every time you switch on and wait for you to select a language.

CL operating modes

The logic relay has two operating modes - RUN and STOP. In RUN mode the logic relay continuously processes a stored circuit diagram until you select STOP or disconnect the power. The circuit diagram, parameters and the CL settings are retained in the event of a power failure. All you will have to do is reset the real-time clock after the back-up time has elapsed. Circuit diagram entry is only possible in STOP mode.

Caution!

In RUN mode the logic relay will immediately run the saved circuit diagram in the unit when the power supply is switched on. This will happen unless STOP mode was set as startup mode. In RUN mode outputs are activated according to the switch logic of the circuit diagram.

When a memory module with a circuit diagram is fitted in a CL model with an LCD display, this circuit diagram will not start automatically if there is circuit diagram in the logic relay. You therefore have to transfer the circuit diagram from the memory module to the logic relay.

In RUN mode CL models without an LCD display load the circuit diagram on the memory module automatically and run it immediately.

Creating your first circuit The following single line diagram takes you step by step diagram through wiring up your first CL circuit diagram. In this way you will learn all the rules, quickly enabling you to use the logic relay for your own projects.

As with conventional wiring, you use contacts and relays in the CL circuit diagram. With the logic relay, however, you no longer have to connect up components individually. At the push of a few buttons, the CL circuit diagram produces all the wiring required. All you have to do is then connect any switches, sensors, lamps or contactors you wish to use.

Figure 36: Lamp controller with relays
In the following example, the logic relay carries out all the wiring and performs the tasks of the circuit diagram shown below.

Figure 37: Lamp controller with logic relay

Starting point: the status display

The logic relay activates the status display after it is powered up. This shows the switching state of the inputs and outputs, and indicates whether the logic relay is already running a circuit diagram.

\rightarrow

The examples were written without the use of expansion units. If an expansion unit is connected, the status display will first show the status of the basic unit and then the status of the expansion unit before showing the first selection menu.

FROMPM. . .
 stop fill Firfirleter: INFO

OK has two other functions:

- Press OK to save modified settings.
- In the circuit diagram, you can also press OK to insert and modify contacts and relay coils.

The logic relay is in STOP mode.

- Press OK $2 \times$ to enter the circuit diagram display via menu items PROGRAM $\ldots \rightarrow$ PROGRAM. This is where you will create the circuit diagram.

Circuit diagram display

The circuit diagram display is currently empty. The cursor flashes at the top left, which is where you will start to create your diagram. The logic relay automatically proposes the first contact input II 1 .

Use the $\wedge \vee$ < > cursor buttons to move the cursor over the invisible circuit diagram grid.

The first three double columns are the contact fields and the right-hand columns form the coil field. Each line is a circuit connection. The logic relay automatically connects the contact to the power supply.

- Now try to wire up the following CL circuit diagram.

The switches S1 and S2 are at the input whilst I1 and I 2 are the contacts for the input terminals. Relay K1 is represented by the relay coil $\cdot \mathbf{W}$. The symbol ${ }^{[1 /}$ identifies the coil's function, in this case a relay coil acting as a contactor. Q1 is one of up to eight CL output relays in the basic unit.

From the first contact to the output coil

With the logic relay you work from the input to the output. The first input contact is II I.

- Press OK.

The logic relay proposes the first contact II at the cursor position.
-II flashes and can be changed, for example, to a F for a pushbutton input using the cursor buttons \wedge or \vee. However, nothing needs to be changed at this point.

- Press OK 2 x , to move the cursor across the 1 to the second contact field.

You could also move the cursor to the next contact field using the cursor button >.

- Press OK.

Again, the CL inserts a contact II at the cursor position. Change the contact number to \mathbb{I} so that n / c contact S 2 can be connected to input terminal I 2 .

- Press OK so that the cursor jumps to the next position and use cursor buttons \wedge or \vee to change the number \mathbb{Z}.

\rightarrow

Press DEL to delete a contact at the cursor position.

- Press OK to move the cursor to the third contact field.

You do not need a third relay contact, so you can now wire the contacts directly up to the coil field.

Wiring

The logic relay displays a small arrow in the circuit diagram when creating the wiring.

Press ALT to activate the arrow and press the cursor buttons ヘV 〈 > to move it.

ALT also has two other functions depending on the cursor position:

- From the left contact field, press ALT to insert a new, empty rung.
- The contact under the cursor can be changed between a n / o and n / c contact by pressing the ALT button.
The wiring arrow works between contacts and relays. When you move the arrow onto a contact or relay coil, it changes back to the cursor and can be reactivated if required.

The logic relay automatically wires adjacent contacts in a circuit connection up to the coil.

- Press ALT to wire the cursor from II through to the coil field.

The cursor changes into a flashing wiring arrow and automatically jumps to the next logical wiring position.

- Press the cursor button $>$. Contact III will be connected up to the coil field.

You can use DEL to erase a connection at the cursor or arrow position. Where connections intersect, the vertical connections are deleted first, then, if you press DEL again, the horizontal connections are deleted.

- Press the cursor button > once more.

The cursor will move to the coil field.

The adjacent menu will appear.

- Press OK.

The circuit diagram is now automatically saved. CANCEL exits the circuit diagram. Changes that have been made to the circuit diagram are not saved.

The logic relay saves all the necessary circuit diagram and program data retentively in the internal data memory.

Once you have connected pushbutton actuators S1 and S2, you can test your circuit diagram straight away.

Testing the circuit diagram

- Switch with ESC to the main menu and select the ${ }^{\text {w }}$ 'TM' $\sqrt{6}$ FW menu option.
 to the RUN or STOP operating modes.

The CL is in RUN mode if the tick is present at the corresponding menu item, i.e. $=$ TMP FIN F^{m}.

The tick next to a menu item indicates which operating mode or function is currently active.

Frobrill . . 4
Stop rum
FFFFPMIETEF.

- Press OK.

The tick changes to "STOP RUN ${ }^{\text {/" }}$
The status display shows the current mode and the switching states of the inputs and outputs.

- Change to the status display by pressing ESC and press pushbutton actuator S1.

The contacts for inputs I1 and I2 are activated and relay Q1 picks up.

Power flow display

The logic relay allows you to check rungs in RUN mode.
This means that you can check your circuit diagram via the built-in power flow display while it is being processed by the logic relay.

- Switch to the circuit diagram display (confirm FFOWFH menu with OK) and actuate pushbutton S 1 .

The relay picks up. The logic relay indicates the current flow.

Press pushbutton actuator $\$ 2$, that has been connected as a n/c contact.

The rung is interrupted and relay Q1 drops out.
Press ESC to return to the status display.
With the logic relay you can test parts of a circuit diagram before it is entirely completed.

The logic relay simply ignores any incomplete wiring that is not yet working and only runs the finished wiring.

Deleting the circuit diagram

- Switch the logic relay to the STOP mode.

The display shows $5 T \mathrm{TOF} / \mathrm{FLN}$.
The logic relay must be in STOP mode in order to extend, delete or modify the circuit diagram.

Froberin
 OELETE FFW

Use PFOTFHill . . to switch from the main menu to the next menu level.

- Select DELETE PROGRAM

The logic relay shows the query DELETE:?
Press OK to delete the program or ESC to cancel.
Press ESC to return to the status display.

Fast circuit diagram entry

You can create a circuit diagram in several ways: The first option is to enter the elements in the circuit and then to wire all the elements together. The other option is to use the enhanced operator guidance of the CL and create the circuit diagram in one go, from the first contact through to the last coil.

If you use the first option, you will have to select some of the elements in order to create and connect up your circuit diagram.
The second, faster option is what you learned in the example. In this case you create the entire rung from left to right.

4 Wiring with the logic relay

By working through the example in chapter 3 you should now have gained an initial impression of just how simple it is to create a circuit diagram in the logic relay. This chapter describes the full range of logic relay functions and provides further examples of how to use the logic relay.

CL operation

Buttons for editing circuit diagrams and function relays

Delete rung, contact, relay or empty rung in the circuit diagram
ALT Toggle between n / c and n / o contact Connect contacts, relays and rungs
Add rungs,
\wedge Change value Move cursor up/down
<> Change place
Cursor left/right
Cursor buttons set as P buttons:

$<$	Input P1,		
	Input P3,		Input P2
Input P4			

Undo setting from last $\mathbf{O K}$ Leave current display, menu Change, add new contact/relay,

Operating principles

The cursor buttons in the circuit diagram perform three functions. The appearance of the flashing cursor indicates the current mode.

- Move
- Enter
- Connect

In Move mode you can use $\wedge \vee<>$ to move the cursor around the circuit diagram in order to select a circuit connection, contact or relay coil.
Use OK to switch to Entry mode so that you can enter or
 change a value at the current cursor position. If you press
ESC in Entry mode, the logic relay will undo the most recent changes.
Press ALT to switch to Connect mode for wiring contacts and relays. Press ALT again to return to Move.

Press ESC to exit the circuit diagram and parameter display.
The logic relay performs many of these cursor movements automatically. For example, the logic relay switches the cursor to Move mode if no further entries or connections are possible at the selected cursor position.

Opening the parameter display for function relays with contacts or coils

If you specify the contact or coil of a function relay in Entry mode, the logic relay automatically switches from the contact number to the function relay parameter display when you press OK.

Press > to switch to the next contact or coil field without entering any parameters.

Program

A program is a sequence of commands which the logic relay executes cyclically in RUN mode. A CL program consists of the necessary settings for the device, password, system settings, a circuit diagram and/or function relays.

Circuit diagram

The circuit diagram is that part of the program where the contacts are connected together. In RUN mode a coil is switched on and off in accordance with the current flow and the coil function specified.

Function relay

Function relays are program elements with special functions. Example: timing relays, time switches, counters. Function relays are elements provided with or without contacts and coils as required. In RUN mode the function relays are processed according to the circuit diagram and the results are updated accordingly.

Examples:
Timing relay $=$ function relay with contacts and coils
Time switch = function relay with contacts

Relays

Relays are switching devices which are electronically simulated in the logic relay. They actuate their contacts according to their designated function. A relay consists of at least a coil and a contact.

Contacts

You modify the current flow with the contacts in the CL circuit diagram. Contacts such as n/o contacts are set to 1 when they are closed and 0 when they are opened. Every n / o or n / c contact in the CL circuit diagram can be defined as either a n/o contact or a n/c contact.

Coils

Coils are the actuating mechanisms of relays. In RUN mode, the results of the wiring are sent to the coils, which switch on or off accordingly. Coils can have seven different coil functions.

Table 5: Usable contacts

Contact	CL display
$\begin{aligned} & \text { I/o contact, } \\ & \text { Open in the rest state } \end{aligned}$	$\begin{aligned} & I, Q, W, N, F, G, Y, \bar{U}, T, Q, F,:, \\ & \mathrm{Q}, \mathrm{~S}, \mathrm{~F}, \mathrm{Z} \end{aligned}$
$4 \begin{aligned} & \mathrm{n} / \mathrm{c} \text { contact, } \\ & \text { Closed in the rest state }\end{aligned}$	

The logic relay works with different contacts, which can be used in any order in the contact fields of the circuit diagram.

In order to ensure compatibility with the ACO10 devices, each CL-LSR/CL-LST and CL-LMR/CL-LMT logically supports all possible contacts. The switching state is always zero if contacts are not supported by the device, i.e. devices without a clock. The switching states of contacts ($n / 0$) and time switches are always logically zero.

This feature enables the same circuit diagram to be used on all CL-AC1, CL-AC2, CL-DC1 and CL-DC2 devices.

Table 6：Contacts

Contact type	n／o	n／c	$\begin{aligned} & \text { CL-LSR } \\ & \text { CL-LST } \end{aligned}$	$\begin{aligned} & \text { CL-LMR } \\ & \text { CL-LMT } \end{aligned}$	Page
Analog value comparator function relay	H	$\stackrel{\text { İ }}{ }$	H1．．．戍明	F1．．．Alil	98
Counter function relay	■	\％	E1．．．Clb	E1．．．Elb	111
Text marker function relay	\square	$\bar{\square}$	D1．．．016	01．．．016	131
7－day time switch function relay	4	6	91．．．48	41．．．68	137
CL input terminal	I	I＇	I1．．．I日	I1．．．I12	77
0 signal			I13	I13	
Expansion status			－	114	236
Short－circuit／overload			I16	I15．．．I16	236
Markers，（auxiliary relay）	M	N		W1．．． NW 16	85
Markers（auxiliary relay）	N	N	NI．．．Nig	NT．．．Nig	85
Operating hours counter	0	$\bar{\square}$	01.04	$01 . .04$	143
Cursor button	F	F	F1．．．F4	F1．．．F4	82
CL output	Q	0	81．．．04	Q1．．．08	77
Input terminal for expansion unit	F	$\overline{\mathrm{F}}$	－	F1．．．P12	77
Short－circuit／overload with expansion	F	$\overline{\mathrm{F}}$	－	F15．．．F16	236
CL output （expansion or auxiliary marker S）	5	3	51．．5日 （as marker）	31．．s8	85
Timer function relay	T	\bar{T}			148
Jump label	：	－	：1．．．： 1	：1．．．： $\mathrm{B}^{\text {l }}$	164
Year time switch	Y	$\overline{4}$	Y1．．．Y＇	Y1．．．Y ${ }^{\text {P }}$	167
Master reset，（central reset）	z	$\overline{2}$	21．．．23	Z1．．．z3	174

Relays，function relays

The logic relay has different types of relay for wiring in a circuit diagram．

In order to ensure compatibility with the AC010 devices， each CL－LSR／CL－LST and CL－LMR／CL－LMT logically supports all relay types internally．If a relay type is not supported by the device，the switching state of the contacts is always set to zero．The switching states of contacts（n／o）and time switches are always logically zero．

This feature enables the same circuit diagram to be used on all CL－AC1，CL－AC2，CL－DC1 and CL－DC2 devices．
Furthermore，you can use outputs that are not physically present as markers．

Relay	CL display	$\begin{aligned} & \text { CL-LSR } \\ & \text { CL-LST } \end{aligned}$	$\begin{aligned} & \text { CL-LMR } \\ & \text { CL-LMT } \end{aligned}$	Coil function	Parameters
Analog value comparator function relay	H			－	\checkmark
Counter function relay	匚	E1．．．E11	W1．．．If	\checkmark	\checkmark
Text marker function relay	\square	01．．．011	01．．．016	\checkmark	\checkmark
7－day time switch function relay	9	\＄1．．． 64	41．．．44	－	\checkmark
Markers（auxiliary relay）	M	M1．．． $\mathrm{M1G}_{16}$	M1．．．N16	\checkmark	－
Markers（auxiliary relay）	N	N1．．．N1 H	N1．．．N16	\checkmark	－
Operating hours counter	0	$01 . .04$	$01 . .04$	\checkmark	\checkmark
CL output relay	Q	Q1．．．0⿴	Q1．．．08	\checkmark	－
CL output relay expansion， marker	5	\＄1．．．5日 （as marker）	\＄1．．58	\checkmark	－
Timer function relay	T	T1．．．Tili		$\sqrt{ }$	\checkmark
Conditional jump	：	：1．．．： 1	：1．．．：目	\checkmark	－
Year time switch	Y	V1．．．V V	V1．．．V仡	－	\checkmark
Master reset，（central reset）	z	Z1．．．23	Z1．．．2］	\checkmark	－

You can set the switching behaviour of these relays by means of the coil functions and parameters selected．

The options for setting output and marker relays are listed with the description of each coil function.

The coil functions and parameters are listed with the description of each function relay.

Circuit diagram display

In the logic relay circuit diagram, contacts and coils are connected up from left to right - from the contact to the coil. The circuit diagram is created on a hidden wiring grid containing contact fields, coil fields and rungs. It is then wired up with connections.

- You can add switching contacts in the three contact fields. The first contact field is automatically connected to the voltage.
- You add the relay coil to be controlled together with its function and designation in the coil field.
- Every line in the circuit diagram forms a circuit connection or rung. Up to 128 rungs can be wired in a circuit diagram.

- Connections are used to produce the electrical contact between switching contacts and the coils. They can be created across several rungs. Each point of intersection is a connection.

The circuit diagram display performs two functions:

- In STOP mode it is used to edit the circuit diagram.
- In RUN mode it is used to check the circuit diagram using the power flow display.

Saving and loading circuit diagrams

The logic relay provides you with two ways of saving circuit diagrams externally:

- Saving with the memory module
- Saving to a PC running CL-SOFT.

Once they have been saved, programs can be reloaded into the logic relay, edited and run.

All circuit diagram data is saved in the logic relay. In the event of a power failure the data will be retained until the next time it is overwritten or deleted.

Memory module

Each CL-LAS.MD003 memory module contains one circuit diagram and is inserted in the interface of the logic relay. The program is stored retentively on the memory module.

The way the memory module works and a description of how to transfer a program to the module is given in on section "Memory module", Page 239.

MD001 memory modules of the AC010 devices can be read in CL-LSR/CL-LST. Memory modules MD001 and MD002 of AC010 devices can be read in the CL-LMR/ CL-LMT.

Only the CL-LAS.MD003 memory module can be write accessed by CL-LSR/CL-LST and CL-LMR/CL-LMT.

CL SOFT

CL-SOFT is a PC program with which you can create, store, test and manage CL circuit diagrams.

Completed circuit diagrams are transferred between your PC and the logic relay via the connecting cable. Once you have transferred a circuit diagram, simply run the logic relay straight from your PC.

Details on the program and transferring circuit diagrams are given in section "CL-SOFT", Page 243.

Working with contacts and relays

In CL circuit diagrams, the switches, buttons and relays of conventional circuit diagrams are connected up using input contacts and relay coils.

Conventional circuit Wired with the logic relay

Input and output contacts

First specify which input and output terminals you wish to use in your circuit.

Depending on the type and configuration, the logic relay has 8,12 or 24 input terminals and $4,6,8,10$ or 16 outputs. The signal states on the input terminals are detected in the circuit diagram with the input contacts I1 to I12. R1 to R12 are the
input contacts of the expansion device．The outputs are switched in the circuit diagram with the output relays Q1 to Q8 or S1 to S8（expansion）．

Entering and changing contacts and relay coils

 A switching contact is selected in the logic relay via the contact name and contact number．

A relay coil is defined by its coil function，name and number．

> A full list of all the contacts and relays is given in the overview starting on Page 72.

I．I Values for contacts and coil fields are changed in Entry
mode．The value to be changed flashes．

\rightarrow

If the field is empty，the logic relay will enter contact II 1 or the coil 1 ．
－Move the cursor using the buttons＜＞ヘン to a contact or coil field．
－Press OK to switch to Entry mode．
－Use＜＞to select the position you wish to change， or press $\mathbf{O K}$ to jump to the next position．
－Use ヘン to modify the value of the position．

The logic relay will leave Entry mode when you press < > or OK to leave a contact field or coil field.

Deleting contacts and relay coils

- Move the cursor using the buttons < > ヘ \vee to a contact or coil field.
- Press DEL.

The contact or the relay coil will be deleted, together with any connections.

Changing n/o contacts to n / c contacts

Every switching contact in the CL circuit diagram can be defined as either a n/o contact or a n / c contact.

- Switch to Entry mode and move the cursor over the contact name.
- Press ALT. The n/o contact will change to a n / c contact.
- Press OK $2 \times$ to confirm the change.

Figure 38: Changing contact II from n / o to n / c

Creating and modifying connections

Switching contacts and relay coils are connected with the wiring arrow in Connect mode. The logic relay displays the cursor in this mode as an arrow.

- Use < > ヘン to move the cursor onto the contact field or coil field from which you wish to create a connection.

Do not position the cursor on the first contact field. At this position the ALT button has a different function (Insert rung).

- Press ALT to switch to Connect mode.

Use < > to move the diagonal arrow between the contact fields and coil fields and $\wedge \vee$ to move between rungs.

- Press ALT to leave Connect mode.

The logic relay will leave the mode automatically when you move the diagonal arrow onto a contact field or coil field which has already been assigned.

In a rung, the CL logic relay automatically connects switching contacts and the connection to the relay coil if there are no empty fields in-between.

I $1-$ - $4-\mathrm{I}-\mathrm{I}$
 I2-I $4-[\mathrm{Ca}$

Never work backwards. You will learn why wiring backwards does not work in section "Example: Do not wire backwards" Page 229.

When wiring more than three contacts in series, use an
 M or N marker.
I2-I $4-N 1-[0$.

Deleting connections

- Move the cursor onto the contact field or coil field to the right of the connection that you want to delete. Press ALT to switch to Connect mode.
- Press DEL.

The logic relay will delete a connection. Closed adjacent connections will be retained.

If several circuit connections are connected to one another, the logic relay first deletes the vertical connection. If you press DEL again, it will delete the horizontal connection as well.

You cannot delete connections that the logic relay has created automatically.

Close the delete operation with ALT or by moving the cursor to a contact or coil field.

Inserting and deleting a rung

The CL circuit diagram shows four of the 128 rungs in the display at the same time. The logic relay automatically scrolls up or down the display to show hidden rungs - even empty ones - if you move the cursor past the top or bottom of the display.

A new rung is added below the last connection or inserted above the cursor position:

- Position the cursor on the first contact field of a circuit connection.
- Press ALT.

The existing rung with all its additional connections is "shifted" downwards. The cursor is then positioned directly in the new rung.

Deleting a rung

The logic relay only removes empty rungs (without contacts or coils).

- Delete all the contacts and relay coils from the rung.
- Position the cursor on the first contact field of the empty rung.
- Press DEL.

The subsequent rung(s) will be "pulled up" and any existing links between rungs will be retained.

Switching with the cursor buttons

The logic relay also allows you to use the four cursor buttons as hardwired inputs in the circuit diagram. to P 4 . The P buttons can be activated and deactivated in the system menu.

The P buttons can also be used for testing circuits or manual operation. These button functions are also useful for servicing and commissioning purposes.

Example 1:

A lamp at output relay Q1 is switched on and off via inputs I 1 and I 2 or using cursor buttons $\wedge \vee$.

Example 2

Terminal I1 is used to control output relay Q1. Terminal I5 switches to Cursor button mode and deactivates rung I1 via M1.

The P buttons are only detected as switches in the status menu. The cursor buttons are used for other functions in the menus, the power flow display and in the text display. The status menu display shows whether the P buttons are used in the circuit diagram.

- P: button function wired and active.
- P2: button function wired, active and P2 button ^ pressed
- P-: button function wired and not active.
- Empty field: P buttons not used.

Checking the circuit diagram

The logic relay contains a built-in measuring device enabling you to monitor the switching states of contacts and relay coils during operation.

- Complete the small parallel connection and switch the logic relay to RUN mode via the main menu.
- Return to the circuit diagram display.

You are now unable to edit the circuit diagram.

\rightarrow

If you switch to the circuit diagram display and are unable to modify a circuit diagram, first check whether the logic relay is in STOP mode.

The circuit diagram display performs two functions depending on the mode:

- STOP: Creation of the circuit diagram
- RUN: Power flow display
- Switch on I3.

In the power flow display, energized connections are thicker than non-energized connections.

You can follow energized connections across all rungs by scrolling the display up and down.

The power flow display will not show signal fluctuations in the millisecond range.This is due to the inherent delay factor of LCD displays.

Working with contacts and relays

Coil functions

You can set the coil function to determine the switching behaviour of relay coils. The following coil functions are available for relays Q, M, S, D, ":":

Table 7: Coil function

Circuit diagram display	CL display	Coil function	Example
	[Contactor function	$\begin{aligned} & {[01,[02,5=4,} \\ & {[: 1,51} \end{aligned}$
$\begin{array}{r}1 \\ \square \\ \hline\end{array}$	7	Contactor function with negated result	301, 302, 354
	1	Cycle pulse on falling edge	low, lid4, lobe $1 \leq 1$
	1	Cycle pulse on rising edge	
	J	Impulse relay function	503, 5M4, 50日, 51
	3	Set (latching)	$\begin{aligned} & 50 \mathrm{~B}, \mathrm{sy2}, \mathrm{sol}, \\ & \mathrm{ss} 4 \end{aligned}$
	F	Reset (unlatching)	FQ4, $\mathrm{FW5} \mathrm{FD} 1$, Fss

Marker relays M and N are used as a flag. The S relay can be used as the output of an expansion unit or as a marker if no expansion unit is connected. The only difference between them and the output relay Q is that they have no output terminals.

The coil functions of the function relays are described in the descriptions for the appropriate relays.

The coil functions $\mathbb{I N}, \mathfrak{7}, 1, l^{1 / 2}$, (contactor, contactor negated, cycle pulse falling, rising edge) must only be used once for each relay coil. The last coil in the circuit diagram determines the status of the relay.

When controlling a contactor or relay, the control coil is only present once. Create parallel circuits or use Set, Reset as a coil function.

Rules for wiring relay coils

To ensure a clear overview of all relay states only assign the same coil function once to a relay $(\bar{J}, \bar{E}, \vec{F})$. However, retentive coil functions such as $\sqrt{ }, \mathbf{E}, \mathrm{F}$ can be used several times if required by the circuit diagram logic.

Exception: When using jumps to structure a circuit diagram, this coil function can also be used effectively several times.

Relay with contactor function ${ }^{[-}$

The output signal follows immediately after the input signal and the relay acts as a contactor.

Figure 39: Signal diagram of contactor function
Display in the logic relay:

- Output relays Q:WI to \mathbb{W} : (depending on type)

- Function relays (Text) D: Will to \mathbb{W}
- Output relays S: $\mathbb{E} 1$ to $\mathbb{E} \mathrm{E}$

Contactor function with negated result (inverse contactor function) 7

The output signal is simply an inversion of the input signal; the relay operates like a contactor with contacts that have been negated. If the coil is triggered with the 1 state, the coil switches its n/o contacts to the 0 state.

Figure 40: Signal diagram of inverse contactor function

Display in the logic relay:

- Output relays Q: Fl to W (depending on type)
- Markers M, N: WN to WN1日, WN to WN1G
- Function relays (Text) D: W 1 to WIb
- Output relays S: F (to F
- Jumps: ": 1 to \ddagger :

Falling edge evaluation (cycle pulse) lis

This function is used if the coil is only meant to switch on a falling edge. With a change in the coil state from 1 to 0 , the coil switches its n/o contacts to the 1 state for one cycle.

Figure 41: Signal diagram of cycle pulse with falling edge

Display in the logic relay:

- Jumps: li: 1 to li: :

Physical outputs should not be used as a cycle pulse is generated.

Rising edge evaluation (cycle pulse) !/

This function is used if the coil is only meant to switch on a
 rising edge. With a change in the coil state from 0 to 1 , the coil switches its n /o contacts to the 1 state for one cycle.

Figure 42: Signal diagram of cycle pulse with rising edge
Display in the logic relay:

- Jumps: $\mathbb{I N}^{\prime}: 1$ to $\mathrm{I}^{\prime \prime}:$:

Physical outputs should not be used as a cycle pulse is generated.

Impulse relay ل"

The relay coil switches whenever the input signal changes from 0 to 1 . The relay behaves like an impulse relay.

Figure 43: Signal diagram of impulse relay
Display in the logic relay:

- Output relay Q: $\sqrt{W} 1$ to \mathbb{W} (depending on type)
- Markers M: $\sqrt{ } \mathrm{N}_{1}$ to $\sqrt{ } \mathrm{M} \mid \mathrm{M}$

A coil is automatically switched off if the power fails and if STOP mode is active. Exception: Retentive coils retain signal $1(\rightarrow$ section "Retention (non-volatile data storage)", Page 221).

Latching relay

The "latch" and "unlatch" relay functions are used in pairs. The relay picks up when latched and remains in this state until it is reset by the "unlatch" function.

Figure 44: Latching relay signal diagram

- Range A: The set coil and the reset coil are triggered at different times
- Range B: Reset coil is triggered at the same time as the set coil
- Range C: Power supply switched off

Display in the logic relay:

- Q output relays: EN to $\mathrm{EQB}, \mathrm{FQ} 1$ to FQ (depending on type)

- (Text) D function relays: ED to $\mathrm{EDR}, \mathrm{FD}$ to FD
- S relays:

ESt to $5 \mathrm{~B}, \mathrm{Fl}$ to FB

 If both coils are triggered at the same time, priority is given to the coil further down in the circuit diagram. This is shown in the above signal diagram in section B.

A latched relay is automatically switched off if the power fails or if the device is in STOP mode. Exception: Retentive coils retain signal $1(\rightarrow$ section "Retention (non-volatile data storage)", Page 221).

Function relays Function relays allow you to simulate the functions of different conventional control engineering devices in your circuit diagram. The CL logic relay provides the following function relays:

Table 8: Function relays

CL circuit diagram display	Function relays
Fl, Fl	Analog value comparator, threshold value switch (only useful for devices with an analog input)
$\mathrm{G}, \mathrm{CO}, \mathrm{DCO}, \mathrm{FO}$	Counter relay, up/down counter, high-speed counter, frequency counter
-2, [0]	Text, output user-defined texts, enter values
61, 6	Time switch, weekday/time
01, [0]	Operating hours counter with limit value entry
T1, TTI, FTI, HT1 X, X	Timing relay, on-delayed Timing relay, on-delayed with random switching
T1, TTI, FT1, HT1 	Timing relay, off-delayed Timing relay, off-delayed with random switching
Tb, TTG, $\mathrm{FTG}, \mathrm{HTG}$ 	Timing relay, on- and off-delayed Timing relay, on- and off-delayed with random switching
T2, TTE, FTE, HTE』	Timing relay, single pulse
T3, TTG, FTB,HTE I	Timing relay, flashing

CL circuit diagram display	Function relays
$\begin{aligned} & \hline: 2 \\ & 5: 2 \end{aligned}$	Jump
YJ	Year time switch, date
21,23	Master reset, central reset of outputs, markers

A function relay is started via its relay coil or by evaluating a parameter. It switches the contact of the function relay according to its function and the set parameters.
\rightarrow
Current actual values are cleared if the power supply is switched off or if the logic relay is switched to STOP mode.

Exception: Retentive coils keep their logic state (\rightarrow section "Retention (non-volatile data storage)", Page 221).

Attention!

The following applies to RUN mode: The logic relay processes the function relays after a pass through the circuit diagram. The last state of the coils is used for this.

Only use the coil of a function relay once. Exception: When working with jumps, the same coil can be used several times.

Example function relay with timer and counter relay

A warning light flashes when the counter reaches 10 . The example shows function relays C 1 and T 1 . The S1 pushbutton actuator is used for the count signal. The S2 pushbutton actuator resets counter P1.

Figure 45: Hardwiring with relays
The wiring of the logic relay is as follows.

Figure 46: CL wiring and circuit diagram
The counter P1 is called C1 in the logic relay.
The timing relay K1T is called T1 in the logic relay.

Complete the circuit diagram up to m .

W" is the count coil of the counter 1 function relay.
\longrightarrow
Press OK to call up the logic relay parameter display.

- Move the cursor onto the 1 of \mathbf{w} and press OK.

The parameter set for the counter is displayed.

- Press the cursor button until the cursor is on the plus sign
 on the right of the S (setpoint).
- Press the OK button.

Press the > button.

Use > to move the cursor onto the tens digit.

- Use ^ン to modify the value of the digit.
- Confirm the value input with OK.
- Press ESC to return to the circuit diagram, the setpoint 0010 will be stored.

\rightarrow

The logic relay has specific parameter displays for function relays. The meaning of these parameters is explained under each relay type.

- Enter the circuit diagram up to coil TT| of the timing relay. Set the parameter for T 1 .

```
T1又 s +
I1 +0
I] +0
T:
```

The timing relay operates as a flash relay. The CL symbol for the flasher/blink relay is \mathbb{H} and is set at the top left of the parameter display. ${ }^{*}$ means here the time base second.

- Select the $\mathbb{\|}$ symbol by pressing the \vee button.

- Press the OK button.
- Press the $>$ button.

- Use the $\wedge \vee\rangle$ buttons to enter the value II . . IIII.
- Confirm with OK.

The time setpoint II for the pause time is 1 s

T1 $\| \quad 5+$
 It $01.0 \square$
 I2 0.50 a
 T:

Use the \checkmark button to enter the value of the second setpoint I2.

- Set this value to 0.5 s .

This is the time value for the pulse time.
Press ESC to leave the parameter entry.
The values are now stored.
Complete the circuit diagram.

Press the ESC button.

- Press OK to store the circuit diagram.
- Test the circuit diagram with the power flow display.
- Switch the logic relay to RUN mode and return to the circuit diagram.

Each parameter set can be displayed using the power flow display for the circuit diagram.

- Move the cursor onto I and press OK.

The parameter set for the counter is displayed with actual

$\mathrm{OH}+$

$=4010$
[iv: ITMI
$\mathrm{EN}+$
5 4010
[. and setpoint values.

Switch I5. The actual value changes.

This is represented in the logic replay parameter display. In the last line : : \|

If the actual value is greater than or equal to the setpoint (10), the left character on the bottom row will change to The contact of counter m switches.

The counter contact triggers the timing relay. This causes the warning light to flash at output Q1.
Power flow of the circuit diagram

Doubling the flashing frequency:

T1 $4 \leq+$	- In the power flow display select Til
E1010.510	Press OK.
Ex 01.80	
	(0.5 and 0.25 s).

- The set time will be accepted as soon as you press OK.

The character on the left of the bottom row will indicate whether the contact has switched or not.

- Contact has not switched (n/o contact open).
- - Contact has switched (n/o contact closed).

You can also modify parameter settings via the PARAMETER menu option.

If you want to prevent other people from modifying the parameters, change the access enable symbol from + to when creating the circuit diagram and setting parameters. You can then protect the circuit diagram with a password.

Analog value comparator/ The logic relay provides 16 analog comparators A1 to A16 threshold value switch for use as required. These can also be used as threshold value switches or comparators.

An analog value comparator or threshold value switch enables you to compare analog input values with a setpoint, the actual value of another function relay or another analog input. This enables you to implement small controller tasks such as two-point controllers very easily.

All CL-AC1, CL-AC2 and CL-DC2 devices are provided with analog inputs.

- The analog inputs of the CL-LSR/CL-LST are I7 and I8.
- The analog inputs of the CL-LMR/CL-LMT are I7, I8, I11 and I12

Compatibility with AC010 devices
If you have loaded an existing AC010 circuit diagram, the previous comparator functions and values are retained. The analog comparator function relay operates in CL-LSR/ CL-LST and CL-LMR/CL-LMT as well as in AC010 devices. The setpoints are converted to the new resolution of the analog inputs. The setpoint 5.0 (AC010) produces the setpoint 512 (CL-LSR/CL-LST, CL-LMR/CL-LMT).

The following comparisons are possible:

Value at function relay input I1	Comparator functions Mode selection at the function relay	Value at function relay value input I2
Analog input I7, I8, $\mathrm{IT1,I2}$		
Setpoint 0000 to 9999		
Actual value of counter relay C1 to C16		

Value at function relay input I1	Comparator functions		Value at function relay value input 12
		Mode selection at the function relay	
Actual value of timing relay T1 to T16			Actual value of timing relay T1 to T16
	Less than	LT	
	Less than/equal to	LE	
	Equal to	EQ	
	Greater than/equal to	GE	
	Greater than	GT	

Table 9: Comparison examples:

A1 function relay Value input I1		A1 function relay Value input I1
17	GE (greater than/equal to)	I8
17	LE (less than/equal to)	I8
17	GE (greater than/equal to)	Setpoint
17	LE (less than/equal to)	Setpoint
18	GE (greater than/equal to)	Setpoint
18	LE (less than/equal to)	Setpoint

Circuit diagram display with analog value comparator

Analog value comparators are integrated as contacts in the circuit diagram.

In the circuit diagram above, I1 enables both analog value comparators. If a value goes below the set value, A 1 switches output Q1. If another value exceeds the set value, A2 deactivates output Q1. A3 switches marker M1 on and off. Table 10: Parameter display and parameter set for analog value

H1	E0
II	+11
F1	+11
12	+11
FE	+11
Ws	+11
HY	+11

H1	Analog value comparator function relay 1
E.	Equal mode The function relay has the following modes: - LT: less than - LE: less than/equal to - EQ: equal to - GE: greater than/equal to - GT:greater than
+	+ appears in the PARAMETER menu. - does not appear in the PARAMETER menu
I1	Comparison value 1 (positive value $\mathrm{I7}, \mathrm{I}, \mathrm{I} 11, \mathrm{I} 12$, actual value T 1 to $\mathrm{T} 16, \mathrm{C} 1$ to C 16)
Fi	Gain factor for II (It $=\mathrm{Fi} \times$ actual value at I1); F1 $=$ positive value from 0 to 9999
12	Comparison value 2 (positive value $\mathrm{I7}, \mathrm{I}, \mathrm{I} 11, \mathrm{I} 12$, actual value T 1 to $\mathrm{T} 16, \mathrm{C} 1$ to C 16)
Fl	Gain factor for II $(I 2=F 2 \times$ actual value at I 2$) ; F 2=$ positive value from 0 to 9999
0	Offset for the value of II (II $=\mathbf{\sigma}+$ actual value at \|1); $O S=$ positive value from 0 to 9999
HY^{\prime}	Switching hysteresis for value I2 Value HV^{\prime} applies both to positive and negative hysteresis. - I $2=$ Actual value at $\mathrm{I} 2+\mathrm{HY}$; - I $\mathbf{Z}=$ Actual value at $\mathrm{I} 2-\mathrm{HY}$; - $\mathrm{HV}=$ Positive value from 0 to 9999

Work normally with analog inputs and setpoints as the parameters for the analog value comparator.

Compatibility of AC010 devices with logic relays

New functions were added to the parameter display of the CL-LSR/CL-LST and CL-LMR/CL-LMT. The AC010 parameters can be found at the following points.

AC010 parameter	Logic relay parameter
${ }_{\text {FiF }}$	
EE	$=13 \mathrm{EE}$
H1	= $\mathrm{Hl}^{\text {l }}$

H1	EE	+
11	HH	+
F1	+1]	
14	EE	+
F	+1]	
	+1]	
	+1]	

\longrightarrow

The analog comparator of the CL-LSR/CL-LST and CL-LMR/ CL-LMT operates internally in the value range:
-2147483648 to +2147483647
This ensures that the correct value is always calculated.
This is important for multiplying values ($\mathrm{I} 1 \times \mathrm{F} 1$ or $12 \times F 2$) .

Example:
I1 = 9999, F1 = 9999
$11 \times F 1=99980001$
The result is within the value range.
$\rightarrow \quad$ If no value is entered at F1 or F2, only the value at I1 and I2 is used (no multiplication).
$\rightarrow \quad$ If the value of a counter relay exceeds the value 9999, the value of the counter is shown in the display of the analog value comparator minus 10000.

Example: Counter actual value $=10233$
Display of the analog value comparator: 233 (10000 is displayed as 0).

Parameter display in RUN mode

Parameter display and parameter set for analog value comparator in RUN mode with the display of the actual values:

Hl	E0	+	
11	-149	+	- Actual value, e.g.: analog input
F1	1010]		- Factor is not used
12	1035	+	- Actual comparison value, e.g.: constant
F2	[10]		- Factor is not used
0	1010		- Offset is not used
HY	1025		-The switching hysteresis is +/- 25

Resolution of the analog inputs

The analog inputs 17 , 18 , and on the CL-LMR/CL-LMT I11, I12 have the following resolution.

The analog signal from 0 to 10 VDC is converted to a 10 -bit digital value from 0 to 1023. A digital value of 100 represents an analog value of 1.0 V (exactly 0.98 V).

Figure 47: Resolution of the analog inputs

Function of the analog value comparator function relay

\longrightarrow

The GT, GE, LT, and LE comparison functions only differ in the fact that GE and LE also switch when the value is equal to the setpoint. To ensure that all analog value comparators of AC010 devices are compatible with the logic relays, the CL-LSR/CL-LST and the CL-LMR/CL-LMT have five comparison modes.

Caution!

Analog signals are more sensitive to interference than digital signals. Consequently, greater care must be taken when laying and connecting the signal lines.

Set the switching hysteresis to a value so that interference signals will not cause accidental switching. A value of 0.2 V (value 20 without gain) must be observed as a safety value.

Function of the Less than comparison

FE + F
$5 \mathrm{~m}+11$
HF IV E IT

Parameter display and parameter set for Less than analog value comparator.

Circuit diagram with analog value comparator.

Figure 48: Signal diagram of analog value comparator in Less than mode

1: actual value at I7
2: setpoint plus hysteresis value
3: setpoint
4: setpoint minus hysteresis
The n/o contact switches off when the actual value at 17 exceeds the setpoint plus hysteresis. If the actual value at 17 falls below the setpoint, the n/o contact switches on.

Function of the Less than/equal to comparison

Parameter display and parameter set for Less than/equal to analog value comparator.

Circuit diagram with analog value comparator.

The values $\mathrm{F}+\mathbb{W} \mathrm{F} \mathbb{Z}+\mathbb{\square}$ and $\mathbb{W}+\mathbb{\square}$ were not defined. No values are used with a gain factor, and no offset is used.

Figure 49: Signal diagram of analog value comparator in Less than/ equal to mode
1: actual value at I7
2: setpoint plus hysteresis value
3: setpoint
4: setpoint minus hysteresis
The n/o contact switches off when the actual value at I7 exceeds the setpoint plus hysteresis. If the actual value at I7 equals or falls below the setpoint, the n/o contact switches on.

Function of the Equal to comparison

Parameter display and parameter set for Equal to analog value comparator.

Circuit diagram with analog value comparator.

The values $\mathrm{Fl}+\mathbb{\square}$ and $\mathbb{Q}+\mathbb{\square}$ were not defined. No values are used with a gain factor, and no offset is used. A gain factor of 10 is used with the analog value at I8. The hysteresis is adjusted accordingly.

Figure 50: Signal diagram of analog value comparator in Equal to mode

1: actual value at 18 , multiplied with gain factor F2
2: setpoint plus hysteresis value
3: setpoint
4: setpoint minus hysteresis
The n/o contact switches on if the actual value at 18 (multiplied by F1) reaches the configured setpoint. If the actual value exceeds the setpoint, the n/o contact switches off. The $n / 0$ contact switches on if the actual value at 18 (multiplied by F1) reaches the configured setpoint. If the actual value falls below the setpoint minus hysteresis, the n/o contact switches off.

Example: Function of the Greater than/equal to comparison

Parameter display and parameter set for Greater than/equal

Circuit diagram with analog value comparator.
 No values are used with a gain factor, and no offset is used.

Figure 51: Signal diagram of analog value comparator in Greater than/equal to mode

1: actual value at I7
2: setpoint plus hysteresis value
3: setpoint
4: setpoint minus hysteresis
The $n / 0$ contact switches if the actual value at $I 7$ is equal to the setpoint. The n/o contact switches off when the actual value at I7 falls below the setpoint minus hysteresis.

Example: Function of the Greater than comparison

Parameter display and parameter set for Greater than analog

$0 \mathrm{os}+0$
HY 0025
 value comparator.

Circuit diagram with analog value comparator.

The values $\mathrm{F}+\mathbb{W}, \mathrm{Fa}+\mathbb{\square}$ and $\mathbb{W}+\mathbb{\square}$ were not defined. No values are used with a gain factor, and no offset is used.

Figure 52: Signal diagram of analog value comparator in Greater than mode

1: actual value at I7
2: setpoint plus hysteresis value
3: setpoint
4: setpoint minus hysteresis
The n/o contact switches if the actual value at 17 reaches the setpoint. The n/o contact switches off when the actual value at 17 falls below the setpoint minus hysteresis.

Example: Analog value comparator as two-step controller

If, for example, the temperature goes below a value, A1
 temperature exceeds the set value, A2 will switch off. If there is no enable signal, output Q1 will always be switched off by 15 .

Parameter settings of both analog value comparators:

Switching on		
H1		$+$
11	I1	+
F1	+11	
12	150]	+
	+11	
	+11	

Switch off		
Hz	ET	+
II	11	+
F1	+110	
12	155]	+
F	+11	
W\%	+11	
HY'	0115	

A simple circuit can be implemented if a switching point of the controller is assigned to the digital switching point of the analog input. This switching point is 8 V DC (CL-DC1, CL-DC2) and 9.5 V (CL-AC1).

Parameter settings:

Switching on		
Hl	LT	+
11	I1	+
F	+11	
12	15010	+
F	+11	
	+1]	
HY'	+11	

Switch off
The switch point is implemented via I7 (digital switching signal).

Example: Analog value comparator, detection of operating states

Several analog value comparators can be used to evaluate

different operating states. In this case 3 different operating states are evaluated.

Parameter settings of three analog value comparators:

First operating state

Fib	Ed	+
It	11	+
Fi	+10	
12	-50]	+
Fa	+1]	
0	+1]	
	-103	

Second operating state Third operating state

Example: Analog value comparator, comparison of two analog values
To compare two analog values, you can use the following circuit. In this case, the comparison determines whether I7 is less than 18.

Parameter settings of the analog value comparator.

Counters

The logic relay provides 16 up/down counters C1 to C16 for use as required. The counter relays allow you to count events. You can define an upper threshold value as a comparison value. The contact will switch according to the actual value.

High-speed counters, frequency counters up to 1 kHz counter frequency.
CL-DC1 and CL-DC2 feature four high-speed counters C13 to C16. The function is defined by the mode selected. The counter input is connected directly to a digital input. The high-speed digital inputs are 11 to 14 .

Possible applications include the counting of components, lengths, events and frequency measurement.

The counters of CL-LSR/CL-LST and CL-LMR/CL-LMT function in the same way as the counters of the AC010 devices. If required, the same counters can also be used for retentive data.

Table 11: Counter modes

Counters	Operating mode	
C1 to C12	N	N or H
$\mathrm{C} 13, \mathrm{C} 14$		Up/down counter Up/down counters or high-speed up counters (CL-DC1, CL-DC2) C15, C16
	N or F	Up/down counters or frequency counters (CL-DC1, CL-DC2)

Wiring of a counter

You integrate a counter into your circuit in the form of a contact and coil. The counter relay has different coils.

To prevent unpredictable switching states, use each coil of a relay once only in the circuit diagram.

Do not use the input of a high-speed counter as a contact in the circuit diagram. If the counter frequency is too high only a random input value will be used in the circuit diagram.

CL circuit diagram with counter relay
The coils and contacts have the following meanings:

Contact	Coil	
C1 to C12		The contact switches if the actual value is greater than or equal to the setpoint.
	CC1 to CC16	Counter input, rising edge counts
	DC1 to DC16	Counting direction - Coil not triggered: up counting.

Parameter display and parameter set for counter relays:

$\underline{\square}$	Counter function relay number 2
N	- Mode N: up/down counter - Mode H: high-speed up/down counter - Mode F: frequency counter
$+$	- + appears in the PARAMETER menu. - - does not appear in the PARAMETER menu
3	Setpoint, constant from 00000 to 32000

In the parameter display of a counter relay you change the mode, the setpoint and the enable of the parameter display.

Compatibility of AC010 with CL-LSR/CL-LST and

 CL-LMR/CL-LMT: Counter parameter display The CL-LSR/CL-LST and CL-LMR/CL-LMT parameter display has been provided with new functions. The AC010 parameters are at the following points.AC010 parameter CL-LSR/CL-LST,

Value range

The counter relay counts between 0 and 32000 .

Behaviour when value range is reached

The CL logic relay is in RUN mode
If the value of 32000 is reached, this value will be retained until the count direction is changed. If the value of 00000 is reached, this value will be retained until the count direction is changed.
Parameter display in RUN mode:

Retention

Counter relays can be operated with retentive actual values. You can select the retentive counter relays in the SYSTEM... \rightarrow RETENTION... menu. C5 to C7, C8 and C13 to C 16 can be selected.
If a counter relay is retentive, the actual value is retained when the operating mode changes from RUN to STOP as well as when the power supply is switched off.

If the logic relay is started in RUN mode, the counter relay operates with the retentively saved actual value.

Determining counter frequency

The maximum counter frequency depends on the length of the circuit diagram in the logic relay. The number of contacts, coils and rungs used determines the run time (cycle time) required to process the CL circuit diagram.

Example: When using CL-LST.C12DC2 with only three rungs for counting, resetting and outputting the result via the output, the counter frequency may be 100 Hz .

The maximum counter frequency depends on the maximum cycle time.

The following formula is used to determine the maximum counter frequency:
$f_{c}=\frac{1}{2 \times t_{c}} \times 0.8$
$f_{c}=$ maximum counter frequency
$t_{c}=$ maximum cycle time
$0.8=$ correction factor

Example

The maximum cycle time is $t_{\mathrm{c}}=4000 \mu \mathrm{~s}(4 \mathrm{~ms})$.
$f_{\mathrm{C}}=\frac{1}{2 \times 4 \mathrm{~ms}} \times 0.8=100 \mathrm{~Hz}$

Function of the counter function relay

Figure 53: Signal diagram
1: Count pulses at the count coil CC...
2: Count direction, direction coil DC...
3: Reset signal at the reset coil RC...
4: Counter setpoint (the setpoint in the figure $=6$)
5: actual value of the counter
6: contact of the counter, C

- Range A: The relay contact of counter \mathbb{E} with setpoint value 6 switches when the actual value is 6 .
- Range B : If the counting direction is reversed, the contact is reset when the actual value is 5 .
- Range C: Without count pulses the current actual value is retained.
- Range D: The reset coil resets the counter to 0 .

Example: Counters, counting unit quantities, manual counter value reset

The input 16 contains the necessary counter information and controls the count coil CC1 of counter 1. Q4 is activated if the setpoint is reached. Q4 remains switched on until I7 resets counter C1 to zero with the RC1 coil.

Circuit diagram display
Parameter settings of the
counter C1

Example: Counting unit quantities, automatic counter value reset

The input I6 contains the necessary counter information and controls the count coil CC2 of counter 2. M8 will be switched on for one program cycle if the setpoint is reached. The counter C2 is automatically set to zero by the reset coil RC2.

Circuit diagram display Parameter settings of the
counter C2

Example of a two counter cascade

Another counter is added to the previous example. As the contact of counter C2 is only set to 1 for one program cycle, the carry of counter C2 is transferred to counter C3. The counter C3 prevents further counting when its setpoint is reached.

Circuit diagram display Parameter settings of the counter C2

En	N	+
	01010	

Parameter settings of the counter C3
25000 pulses are counted. $25 \times 1000=$ 25000

5	N
	0105

Example: Up/down counting with a scan for actual value $=$ zero

The input 16 contains the necessary counter information and controls the count coil CC6 of counter 6. Marker N2 is set if the setpoint is reached. Marker N2 controls the direction coil DC6 of counter C6. If N2 is 1 (activated), counter C6 counts down. If the actual value of the counter is 00000 , the analog
value comparator A6 resets mark N2. The direction coil DC6 of counter C is switched off. Counter C6 only operates as an up counter.

Parameter settings of the analog value comparator A6

Fif	EP	+
I1		+
F1	+1]	
II	110111	+
FL	+11	
$0 \pm$	+1]	
HY	+1]	

The above example scans the value zero. However, any permissible value within the range of the analog value comparator function block can be entered.

Example: Counter with retentive actual value
Select a retentive counter if you wish to retain the actual value of a counter, even after a power failure or a change from RUN to STOP.

- Select the required counter in the SYSTEM... \rightarrow RETENTION... menu.

M4-M12
MG - - M16
$\mathrm{N} 9-\mathrm{NH}$
E5-E1才
\%
Eta-Elb
T 10
T ${ }^{\text {T }}$
TiJ - Tib
$\mathrm{a} \mid-\mathrm{\square}$

The example shows the counters C5 to C7 as retentive counters.

Circuit diagram display Parameter settings of the counter C5

5	N
	10565

The counter has the value 450 before the power supply is switched off.

Figure 54: Retentive counter
(1) The numerical value 450 is retained even after a power outage. $\mathrm{U}=$ Supply voltage of the device

High-speed counters, CL-DC1, CL-DC2

The logic relay provides various high-speed counter functions. These counter function blocks are coupled directly to digital inputs. The following functions are possible:

- Frequency counters: C15 and C16
- High-speed counters: C13 and C14.

Frequency counter

The logic relay provides two frequency counters C15 and C16 for use as required. The frequency counters can be used for measuring frequencies. The high-speed frequency counters are permanently connected to the digital inputs I3 and 14 .

Applications such as speed monitoring, volume measurement using a volume counter, the monitoring of machine running can be implemented with the frequency counter.

The frequency counter allows you to enter an upper threshold value as a comparison value. The C15 and C16 frequency counters are not dependent on the cycle time.

Counter frequency and pulse shape

The maximum counter frequency is 1 kHz .
The minimum counter frequency is 4 Hz .
The signals must be square waves. We recommend a mark-to-space ratio of 1:1.

If this is not the case:
The minimum mark-to-space ratio is 0.5 ms .
$t_{\text {min }}=0.5 \times \frac{1}{f_{\text {max }}}$
$t_{\text {min }}=$ minimum time of the pulse or pause duration
$f_{\text {max }}=$ maximum count frequency (1 kHz)

Frequency counters operate independently of the program cycle time. The result of the actual value setpoint comparison is only transferred once every program cycle for processing in the circuit diagram.

The reaction time in relation to the setpoint/actual value comparison can therefore be up to one cycle in length.

Measurement method

The pulses on the input are counted for one second irrespective of the cycle time, and the frequency is determined. The measurement result is provided as an actual value.

Wiring of a frequency counter

The digital inputs have the following assignment:

- I3 counter input for frequency counter C15.
- I4 counter input for frequency counter C16.

\longrightarrow

If you use C15 or C16 as frequency counters, coils DC15 or DC16 will have no function. The counter signals are transferred directly from the digital inputs I3 and I4 to the counters. A frequency counter measures the actual value and does not measure a direction.

You only integrate a frequency counter into your circuit in the form of a contact and enable coil. The coils and contacts have the following meanings:

Contact	Coil	
W15 toEl6		The contact switches if the actual value is greater than or equal to the setpoint.
	EC15, EC16	Enable of the frequency counter on " 1 " state, coil activated
	$\mathrm{FCT5}, \mathrm{FC16}$	Reset, coil triggered: actual value reset to 00000

The frequency counter can also be enabled specifically for a special operating state. This has the advantage that the cycle time of the device is only burdened with the frequency measurement when it is taking place. If the frequency counter is not enabled, the cycle time of the device is shorter.

Parameter display and parameter set for frequency counter:

E15	Counter function relay number 15
F	Mode F: frequency counter
+	- + appears in the PARAMETER menu. - - does not appear in the PARAMETER menu
8	Setpoint, constant from 00000 to 01000 (32000 is a possible setting, the maximum frequency is 1 kHz)

In the parameter display of a counter relay you change the mode, the setpoint and the enable of the parameter display.

Value range

The counter relay counts between 4 and $1000[\mathrm{~Hz}]$.
Parameter display in RUN mode:

Retention

Setting retention on the frequency counter serves no purpose since the frequency is continuously remeasured.

Function of the frequency counter

Figure 55: Signal diagram of frequency counter
1: counter input I3 or I4
2: upper setpoint
3: enable coil CC...
4: reset coil RC...
5: contact (n/o contact) C... upper setpoint value reached.
t_{g} : gate time for the frequency measurement

- Range A: The counter is enabled. After a frequency above the setpoint was measured for the first time, contact C15 (C16) switches.
- Range B: If the actual value falls below the setpoint, the contact is reset. The removal of the enable signal resets the actual value to zero.
- Range C: The counter is enabled. After a frequency above the setpoint was measured for the first time, contact C15 (C16) switches.
- Range D: The reset coil resets the actual value to zero.

Example: Frequency counter

Frequency counters with different switch points
The frequency measured at input 13 is to be classified in different value ranges. The analog value comparator is used as an additional comparison option.

The counter is enabled via the marker N3. The value 900 or higher is detected by frequency counter C15 as the upper limit value. This triggers the coil of marker N4.

If the frequency is higher than 600 Hz , analog value comparator A1 indicates this and triggers marker N5.

If the frequency is higher than 400 Hz , analog value comparator A2 indicates this and triggers marker N6.

Circuit diagram display Parameter settings of the

Parameter settings of the analog value comparator A1

$\mathrm{Fe}+1$

O" +

$\mathrm{Hi}^{\mathrm{Y}}+\mathrm{I}$
counter C15

Parameter settings of the analog value comparator A2

A2	GE	
I1	$\underline{6}$	
Fi	+10	
	1401	

Fa +1
$0 \mathrm{c}+\mathrm{d}$
$\mathrm{HY}+\square$

High-speed counters

You can use the high-speed counters to count high frequency signals reliably.

The logic relay provides two high-speed up/down counters C13 and C14 for use as required. The high-speed counter inputs are permanently connected to the digital inputs 11 and 12. This counter relay allows you to count events independently of the cycle time.

The high-speed counters allow you to enter an upper threshold value as a comparison value. The C13 and C14 high-speed counters are not dependent on the cycle time.

Counter frequency and pulse shape

The maximum counter frequency is 1 kHz .
The signals must be square waves. We recommend a mark-to-space ratio of 1:1.

If this is not the case:
The minimum mark-to-space ratio is 0.5 ms .
$t_{\text {min }}=0.5 \times \frac{1}{f_{\max }}$
$t_{\text {min }}=$ minimum time of the pulse or pause duration
$f_{\text {max }}=$ maximum count frequency (1 kHz)

High-speed counters operate independently of the program cycle time. The result of the actual value setpoint comparison is only transferred once every program cycle for processing in the circuit diagram.

The reaction time in relation to the setpoint/actual value comparison can therefore be up to one cycle in length.

Wiring of a high-speed counter

The digital inputs have the following assignment:

- I1: high-speed counter input for counter C13.
- I2: high-speed counter input for counter C14.

If you use C13 or C14 as high-speed counters you must enable them with the coil CC13 or CC14 accordingly.
You integrate a high-speed counter into your circuit in the form of a contact and coil.

The coils and contacts have the following meanings:

Contact	Coil	
$\begin{aligned} & \mathrm{E}=\text { to } \\ & \mathrm{E} 14 \end{aligned}$		The contact switches if the actual value is greater than or equal to the setpoint.
	©®13, 0.14	Enable of the high-speed counter on 1 signal coil activated
	ロロ13, OCI	Counting direction - Status 0, not activated, up counting. - Status 1, activated, down counting.
	FCIJ, FC14	Reset, coil triggered: actual value reset to 00000

The high-speed counter can also be enabled specifically for a special operating state. This has the advantage that the cycle time of the device is only burdened with the counting when it is taking place. If the high-speed counter is not enabled, the cycle time of the device is shorter.
Parameter display and parameter set for the
 high-speed counter:

C13	Counter function relay number 13
H	High-speed counter mode (H = high speed)
+	- + appears in the PARAMETER menu. - - does not appear in the PARAMETER menu
5	Setpoint, constant from 00000 to 32000

In the parameter display of a counter relay you change the mode, the setpoint and the enable of the parameter display.

Value range

The counter relay counts between 0 and 32000 .

Behaviour when value range is reached

The logic relay is in RUN mode.
The value is retained if the counter reaches 32000 . If the counter counts down and reaches 0 , this value is retained.

Parameter display in RUN mode:

Retention

The high-speed counter can be run with the retentive actual value. You can select the retentive counter relays in the SYSTEM... \rightarrow RETENTION... menu. C5 to C7, C8 and C13 to C16 can be selected.

If a counter relay is retentive, the actual value is retained when the operating mode changes from RUN to STOP as well as when the power supply is switched off.

If the logic relay is started in RUN mode, the counter relay operates with the retentively saved actual value.

Function of the high-speed counter function block

Figure 56: Signal diagram of high-speed counter
1: count pulses at counter input I1(I2)
2: setpoint of the counter
3: actual value of the counter
4: enable of the counter, CC13 (CC14)
5: count direction, direction coil DC13 (DC14)
6: reset coil of the counter RC13 (RC14)
7: contact of the counter, C13 (C14)

- Range A: The relay contact C 13 (C14) of the counter with setpoint value 512 switches as soon as the actual value is 512 .
- Range B: When new count pulses or the counter enable are not present, the actual value is retained.
- Range C: If the count direction is reversed DC13 (DC14), the contact is reset when the actual value is 511 .
- Range D : The count direction is set to up counting
- Range E: The reset coil RC13 (RC14) resets the counter to 0. No pulses are counted.
- Range F: The reset coil is not active, pulses are counted.

In the examples it must be remembered that there may be a time difference of up to one program cycle between the setpoint/actual value comparison and the processing of the result. This may cause deviations in values.

Example: Counting measuring pulses and setting an output

Measuring pulses can represent lengths, rotations, angles or other values. These program sections are required for applications involving the filling of sacks, bags or the cutting of foil.

The count signals are continuously present at I1. The high-speed counter C13 counts these pulses. The counter is automatically set to zero if the actual value equals the setpoint. Contact C13 is then set for one program cycle. The output Q3 is set at the same time. This is then reset by input 18.

Example: Running motors or spindles in parallel Applications may involve motion control with the parallel control of two drives. Only certain deviations are permissible so that the mechanical system does not jam.

These tasks can be implemented with the following solution. 18 starts the drives. 17 and 16 carry the feedback signals of the motor-protective circuit-breakers. The drives are stopped if a motor-protective circuit-breaker trips. The analog value comparators control the difference of the path distance. The appropriate drive is stopped temporarily if one path distance is outside of the set tolerance. The coils and contacts have the following meanings:

- M8 = enable for all drives
- Q1 = drive 1, counter drive 1 is connected with input I1 and this with high-speed counter C13.
- Q2 = drive 2 , counter drive 2 is connected with input I 2 and this with high-speed counter C14.
- A1 = comparison, if C13 is less than C14, drive 2 is too fast.
- A 2 = comparison, if C14 is less than C13, drive 1 is too fast.
- A3 = comparison, if C13 and C14 are equal, both drives can be activated.
- The hysteresis value of $\mathrm{A} 1, \mathrm{~A} 2$ and A 3 depends on the resolution of the transducer and the mechanical system.

Circuit diagram display

Parameter settings of the counter C13

Parameter settings of the counter C14

Parameter setting of analog value comparators A1 and A2

¢1 LT	+	fic LT	+
It 6	+	I1 514	4
Fi + ${ }^{\text {d }}$		F1 +	
I2 54	*	I2 Cl	+
F2 +0		Fe +0	
$05+\square$		$05+\square$	
HY 0015		HY $\mathrm{Ha}^{\text {a }}$	

Parameter settings A3

H1	EQ	+
11	51	+
F1	+11	
12	$\underline{6} 4$	\pm
Fe	+1]	
$\underline{\square}$	+1]	
HY	10]	

CL-LSR/CL-LST and CL-LMR/CL-LMT are able to display 16 freely editable texts. These texts can be triggered by the actual values of function relays such as timing relays, counters, operating hours counters, analog value comparators, date, time or scaled analog values. The setpoints of timing relays, counters, operating hours counters, analog value comparators can be modified when the text is displayed. The text display can only be edited with CL-SOFT (from Version 6.xx). The texts are stored in the CL-SOFT file or on the CL-LAS.MD003 memory module for CL-LSR/CL-LST and CL-LMR/CL-LMT.

Compatibility with AC010
If you wish to load an existing AC010 circuit diagram, the available text display functions are retained. The text display operates in CL-LSR/CL-LST and CL-LMR/CL-LMT in the same way as in ACO10.

Wiring a text display

You integrate a text display into your circuit in the form of a contact and coil.

The coils and contacts have the following meanings:

Contact	Coil	
-1 to Dib		Coil of the corresponding text display is triggered
		If a coil is triggered, the text is shown in the display.

The text display does not have a parameter display in the PARAMETER menu.

Retention

The texts D1 to D8 can be operated with retentive actual values (contacts).

If the text displays are retentive, the actual value is retained when the operating mode changes from RUN to STOP as well as when the power supply is switched off.

When the logic relay is restarted in RUN mode, the text displays D1 to D8 continue with the retentively stored actual value.

Example of a text display:

SWITEH: mWTFOL MIEFLHE, WHEEMEV!

The text display can display the following:

FUNTINE M: E -Line 1,12 characters
T1: \|12:46 - Line 2, 12 characters, a setpoint or actual value
W: 1155 5T-Line 3, 12 characters, a setpoint or actual value
FROUNED
Line 4, 12 characters

Scaling

The values of the analog inputs can be scaled.

Range	Selectable display range	Example
10 to +10 V	0 to 9999	0000 to 0100
10 to +10 V	± 999	-025 to 050
10 to +10 V	± 9.9	-5.0 to 5.0

Function

The D text output function block ($\mathrm{D}=$ Display, tex t display) operates in the circuit diagram like a normal M marker. If a text is assigned to a marker, this is displayed in the CL display when the coil is set to 1 . For this to take place, the logic relay must be in RUN mode and the status display must be activated before the text is displayed.

D2 to D16:
If several texts are present and are triggered, each text is automatically displayed in turn every 4 s . This process will be repeated until

- No other text display function block is set to 1 .
- STOP mode is selected.
- The power supply of the logic relay is no longer present.
- The OK or DEL + ALT buttons are used to switch to a menu.
- A setpoint is entered.
- The text for D1 is displayed.

D1:
D1 is designed as an alarm text. If D1 is activated, the text assigned to it will be displayed until

- The coil D1 is reset to 0 .
- STOP mode is selected.
- The power supply of the logic relay is no longer present.
- The OK or DEL + ALT buttons are used to switch to a menu.

Text entry

Text entry is only possible using CL-SOFT.

Character set

All ASCII characters in upper and lower case are permissible.

- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijkImnopqrstuvwxyz

The following special characters are permissible:
! „" \# \$ \% \& ' () * + , -. 0123456789

Counter with actual value	Analog input scaled as temperature value	D1 as error message on fuse failure
QUFNTITY FDE: T142 ! OUNTING!	TEMFEFATINE OUT - W1] DEG IN +101日 Deg HEAT	FUEE FHUT HOUSE 1 FAILEE!

Figure 57: Text output examples

Entering a setpoint in a display

A text can contain two values such as actual values and setpoints of function relays, analog input values and time and date. The position of setpoints and actual values is fixed to the centre of lines 2 and 3 . The length depends on the value to be displayed. Setpoint entries in the text display are useful if the PARAMETER menu is not available for display or entry. Also when the operator is to be shown which setpoint is being modified.

The appropriate text function block must be available in order to modify a setpoint. The setpoint must be a constant.

$\rightarrow \quad$ When values are being entered, the text is retained

 statically on the display. The actual values are updated.The example shows the following.
The setpoint of timing relay T1 is to be changed from 12 minutes to 15 minutes.

- Line 2: setpoint of timing relay T1, can be edited.
- Line 3: actual value of timing relay T1.

The text is displayed.

ETIF M:

: : \|1]:॥

BREAD FOLLS

STIF M:S
 E: 012:00
 fict: an:

STIF M:S
5: 『12:0
filt: 0 al: EFEAD ROLLS

ETIF M:S
E: 015:00
FCT: $10 \mathrm{D}: 34$
eferd rolls
sTIF M:S
5: 015:00
FITT: $10 \mathrm{~A}: 34$
eremp rolls
sTIF M:S
3: प15:010
FITT: AD: 34
eremp rolls

- Pressing the ALT button will cause the cursor to jump to the first editable value.

In this operating mode, you can use the cursor buttons $\wedge \vee$ to move between different editable constants.

- Press the OK button, the cursor will jump to the highest digit of the constant to be modified.

In this operating mode use the cursor buttons $\wedge \vee$ to modify the value. Use the cursor buttons < > to move between digits.
Use the $\mathbf{O K}$ button to accept the modified value. Use the ESC button to abort the entry and leave the previous value.

- Press the OK button, the cursor will move from constant to constant.

The modified value is accepted.

Press the ESC button to leave Entry mode.

7-day time switch

Types CL-LSR.C... /CL-LST.C... and CL-LMR.C.../CL-LMT.C... are provided with a real-time clock. The time switches can only be used properly in these devices.

\rightarrow

The procedure for setting the time is described under section "Setting date and time" on Page 205.

The logic relay offers eight 7-day time switches 4 to (4 for up to 32 switch times.
Each time switch has four channels which you can use to set four on and off times. The channels are set via the parameter display.

The timer has a back-up battery. This means that it will continue to run in the event of a power failure, although the time switch relays will not switch. When the logic relay is in a de-energized state, the timer contacts remain open. Information on the battery back-up time are provided on Page 256.

Compatibility with AC010
If you wish to load an existing AC010 circuit diagram, the existing 7-day time switch functions are retained. The 7day time switches in the CL-LSR/CL-LST and CL-LMR/ CL-LMT operate in the same way as in the AC010.
A 7-day time switch can be integrated into your circuit in the form of a contact.

Contact	Coil
$\mathbf{W 1 ~ t o ~}$	

\#1 +	Parameter display and parameter set for 7-day time switch	
	*	7-day time switch function relay 1
	$\begin{aligned} & \mathrm{A}, \mathrm{E}: \\ & \mathrm{E}: \mathrm{D} \end{aligned}$	Time switch channels
	+	- + appears in the PARAMETER menu, - - does not appear in the PARAMETER menu
	\square	Day setting, from -- to --
	0 N	On time
	OFF	Off time

The parameter display for a 7-day time switch is used to modify the weekdays, the on time, the off time and to enable the parameter display.

Compatibility of AC010 with CL-LSR/CL-LST and CL-LMR/CL-LMT: 7-day time switch parameter display The CL-LSR/CL-LST and CL-LMR/CL-LMT parameter display has been modified. The AC 010 parameters are at the following points.

AC010 parameter CL-LSR/CL-LST,

畍 - - - - - -
OFF --m: - -
$+$

W	
\square	$\mathrm{mm}-\mathrm{EE}$
W	--":- --
WFF	--"- : $^{\text {- }}$

Table 12：On and off times

Parameters	Meaning	Meaningful values
Day of the week	Monday to Sunday	MO，TU，WE，TH，FR， SA，SU，－－
On time	Hours：Minutes No time set at＂－－：－－＂	00：00 to 23：59，－－：－
Off time	Hours：Minutes No time set at＂－－：－－＂	00：00 to 23：59，－－：－－

Parameter display in RUN mode：

$$
\begin{aligned}
& \text { I } \quad \mathrm{HOMFF} \text {-Weekday(s) from - to }
\end{aligned}
$$

> Contact has not switched.
> - Contact has switched.

Changing time switch channel

You can change time switch channel in either RUN or STOP mode by selecting the channel required with the cursor buttons $\wedge \vee$ ．
Example：

㽤 4 11：30 +
［ $\mathrm{HO-FF}$
0N 环：45
OFF 19：30
© E 11：30 +
－Ef
ON 昭：45
OFF 15：011

The parameter display of the 7－day time switch is active．The cursor is flashing on channel $\overline{\mathrm{F}}$ ．
－Press the \wedge button to move the cursor to channel E ．
Press the $>$ button to reach any value that can be edited．

Function of the 7－day time switch

The following examples illustrate the function of the 7－day time switch．

Work days example

The time switch switches on Monday to Friday between 06:30 and 09:00 and between 17:00 and 22:30.

Figure 58: Work days signal diagram

Weekends example

Time switch switches on at 16:00 on Friday and switches off at 06:00 on Monday.

Figure 59: Signal diagram of "weekend"

Night switching example

Time switch switches on at 22:00 on Monday and switches off at 06:00 on Tuesday.

63	+
\square	10
0 N	2]:0]
OFF	[6:10]

Figure 60: Night switching signal diagram

If the Off time is before the On time, the logic relay will switch off on the following day.

Time overlaps example

The time settings of a time switch overlap. The clock switches on at 16:00 on Monday, whereas on Tuesday and Wednesday it switches on at 10:00. On Monday to Wednesday the switching-off time is 22:00.

Figure 61: Time overlaps signal diagram

\rightarrow
 On and off times always follow the channel which switches first.

Power failure example

The power is removed between 15:00 and 17:00. The relay drops out and remains off, even after the power returns, since the first off time was at 16:00.

$\underline{46}$	+	94 E	+
0	M0-m	\square	M0-su
0 N	12:1010	0 N	12:10]
OFF	16:10]	OFF	1月:10]

When switched on, the logic relay always updates the switching state on the basis of all the available switching time settings.

24 hour switching example

The time switch is to switch for 24 hours. Switch-on time at 00:00 on Monday and switch-off time at 00:00 on Tuesday.

41 \%	
\square	H0
OH	101010
OFF	---'---

Operating hours counter The logic relay provides 4 independent operating hours counters. These operating hours counters enables you to record the operating hours of systems, machines and machine parts. An adjustable setpoint can be selected within the value range. In this way, maintenance times can be logged and reported. The counter states are retained even when the device is switched off. As long as the count coil of the operating hours counter is active, the logic relay counts the hours in one second cycles.
You integrate an operating hours counter into your circuit in
 the form of a contact and coil.

Contact	Coil	
01 to 04		
	501 to 504	Count coil of the operating hours counter
	FOt to FO4	reset coil of the operating hours counter

Parameter display and parameter set for the operating hours

$\begin{array}{ll} 04 & \\ 5 & 1010010 \end{array}+$	
	:

04	Operating hours counter number 04
+	- + appears in the parameter display - - appears in the parameter display
\pm	Setpoint in hours
0:	Actual value of the operating hours counter [h]

In the parameter display of an operating hours counter you change the setpoint in hours and the enable of the parameter display.

Parameter display in RUN mode:


```
Contact has not switched.
|. Contact has switched.
```


Value range of the operating hours counter

The operating hours counter counts in the range from 0 hours up to more than 100 years.

Accuracy of the operating hours counter

The operating hours counter counts in seconds. When the device is switched off, up to 999 ms can be lost.

Function of the operating hours counter function block

When the coil of the 0 operating hours counter is set to 1 , the counter increments its actual value by 1 (basic pulse: 1 second).

If the actual value of the operating hours counter reaches the setpoint of S, the contact $0 \ldots$ switches for as long as the actual value is greater than or equal to the setpoint.

The actual value is kept stored in the device until the reset coil RO... is triggered. The actual value is then set to zero. delete program, change program, load new program. All these functions do not clear the actual value of the operating hours counter.

Example: Operating hours counter

Operating hours counter for the operating time of a machine. The time in which a machine (logic relay) is energized is to be measured.

Circuit diagram display Parameter settings of operating hours counter 01

Example: Maintenance meter for different machine sections

Machine sections have to be maintained after different times have elapsed. Markers N1 and N2 are the On markers of two different machine sections. These markers control the associated operating hours counters. Output Q4 switches on a warning light if the setpoint of an operating hours counter has been reached. A keyswitch at input 18 resets the associated operating hours counter after maintenance has been completed.

Circuit diagram display

Parameter settings of operating hours counter 02

Parameter settings of operating hours counter 03

Example: Maintenance meter for different machine sections, with text output

The entire machine operating time is to be counted. Machine sections have to be maintained after different times have elapsed. Markers N1 and N2 are the On markers of two different machine areas. These markers control the associated operating hours counters. Output Q4 switches on a warning light if the setpoint of an operating hours counter has been reached. This should flash. A keyswitch at input 18 resets the associated operating hours counter after maintenance has been completed.

The entire machine operation time is to be displayed continuously. The run time of the machine sections should only be displayed once the maintenance interval has elapsed.

Circuit diagram display Parameter settings of operating hours counter 01

Parameter settings of operating hours counter 02

Parameter settings of operating hours counter 03

Timing relays

The timing relays of CL-LSR/CL-LST and CL-LMR/CL-LMT function in the same way as the timing relays of the AC010 devices.

Exception: The "flasher" function starts on the CL-LSR/ CL-LST and CL-LMR/CL-LMT with the pulse. With the AC010, the "flasher" function starts with the pause. If required, the same timing relays can also be used for retentive data.

You integrate a timing relay into your circuit in the form of a
The logic relay provides 16 timing relays from T 1 to T 16.
A timing relay is used to change the switching duration and the make and break times of a switching contact. The delay times can be configured between 2 ms and 99 h 59 min . You can use positive values, values of analog inputs, actual values of counter relays and timing relays.

You can also use the logic relay as a multi-function relay in the application. The logic relay is more flexible than any hardwired timing relay since you can wire all the functions at the push of a button as well as program additional functions. contact and coil.

Contact	Coil	
Tit to Tili		Contact of a timing relay
	TTI to TTil	Enable, timing relay trigger
	FTi to RTil	reset coil of the timing relay
	HTi to HTil	stop coil of the timing relay ($\mathrm{H}=$ Stop , S means the set coil function)

To prevent unpredictable switching states, use each coil of a relay once only in the circuit diagram.

T1 $\chi=+$	Parameter display and parameter set for a timing relay	
II 10.1010	T1	Timing relay number 1
T:	X	On-delayed mode
	\pm	Time range in seconds
	+	- + appears in the PARAMETER menu. - - does not appear in the PARAMETER menu
	II	Time setpoint 1: - Positive value, I7, I8, I11, 112 - Actual value T1 to T16, C1 to C16
	I2	Time setpoint 2 (with timing relay with 2 setpoints): - Positive value, I7, I8, I11, 112 - Actual value T1 to T16, C1 to C16
	T:	Display of actual value in RUN mode

In the parameter display of a timing relay you can change the mode, the time base, the time setpoint 1, time setpoint 2 (if necessary) and the enable of the parameter display.

Compatibility of AC010 with CL-LSR/CL-LST and CL-LMR/CL-LMT: Timing relay parameter display

 The CL-LSR/CL-LST and CL-LMR/CL-LMT parameter display has been provided with new functions. The AC010 parameters are at the following points.AC010 parameter CL-LSR/CL-LST-,

Fin. EE
+

	CL-LMR/CL-LMT
	parameter
$=$	TH
$=$	x
$=$	s
$=$	$\mathrm{Al} \cdot \mathrm{ED}$
$=$	+

I1 Fin . E
I

Parameter display in RUN mode:

Retention

Timing relays can be run with retentive actual values. Select the number of retentive timing relays in the SYSTEM... \rightarrow RETENTION... menu.T7, T8, T13 to T16 can be used as retentive timing relays.

If a timing relay is retentive, the actual value is retained when the operating mode is changed from RUN to STOP and when the power supply is switched off.

If the logic relay is started in RUN mode, the timing relay operates with the retentively saved actual value.

When the device is restarted, the status of the trigger pulse must be the same as on disconnection.

Status 1 with all operating modes:

- on-delayed,
- single pulse,
- flashing.

Status 0 with all operating modes: off-delayed.
Status 1 or 0 (as with disconnection): on-delayed: on/offdelayed

Timing relay modes

Parameters	Switch function
X	Switch with on-delay
$8 \times$	Switch with on-delay and random time range
[Switch with off-delay
\%溳	Switch with off-delay and random time range
x x	On- and off-delayed, two time setpoints
\% x	On- and off-delayed switching with random time, 2 time setpoints
』	Single-pulse switching
$\underline{11}$	Flash switching, mark-to-space ratio $=1: 1,2$ time setpoints
$\underline{11}$	Flash switching, mark-to-space ratio $\neq 1: 1,2$ time setpoints

Time range

Parameters	Time range and setpoint time	Resolution
3080.00	Seconds: 0.00 to 99.99 s	10 ms
M: 510.010	Minutes: Seconds 00:00 to 99:59	1 s
H:M00:	Hours: Minutes, 00:00 to 99:59	1 min .

Minimum time setting:
If a time value is less than the logic relay's cycle time, the elapsed time will not be recognised until the next cycle. This may cause unforeseeable switching states.

Variable values as time setpoint (I7, I8, I11, I12, actual value T1 to T16, C1 to C16)

[^1]You can only use analog values as setpoints if the value of the analog input is stable. Fluctuating analog values reduce the reproducibility of the time value.

The following conversion rules apply if you are using variable values such as an analog input:
s time base
Equation: Time setpoint $=($ Value $\times 10)$ in [ms]

Value, e.g. Analog input	Time setpoint in [s]
0	00.00
100	01.00
300	03.00
500	05.00
1023	10.23

M:S time base

Rule:
Time setpoint = Value divided by 60, integer result = Number of minutes, remainder is the number of seconds

Value, e.g. Analog input	Time setpoint in [M:S]
0	$00: 00$
100	$01: 40$
300	$05: 00$
500	$08: 20$
1023	$17: 03$

Time base H:M
Rule:
Time setpoint $=$ Value divided by 60,
integer result = Number of hours, remainder is the number of minutes

Value, e.g. Analog input	Time setpoint in $[\mathrm{H}: \mathrm{M}]$
0	$00: 00$
100	$01: 40$
300	$05: 00$
606	$10: 06$
1023	$17: 03$

Function of the timing relay function block

Timing relay, on-delayed with and without random switching
Random switching: The contact of the timing relay switches randomly within the setpoint value range.

Figure 62: Signal diagram of timing relay, on-delayed (with and without random switching)

1: Trigger coil TTx
2: Stop coil HTx
3: Reset coil RTx
4: Switching contact (n/o contact) Tx
t_{5} : Setpoint time

- Range A: The set time elapses normally.
- Range B: The entered setpoint does not elapse normally because the trigger coil drops out prematurely.
- Range C: The stop coil stops the time from elapsing.

Figure 63: Signal diagram of timing relay, on-delayed (with and without random switching)

- Range D: The stop coil is inoperative after the time has elapsed.
- Range E: The reset coil resets the relay and the contact.
- Range F: The reset coil resets the time during the timeout sequence. After the reset coil drops out, the time elapses normally.

Timing relay, off-delayed with and without random switching

Random switching: The contact of the timing relay switches randomly within the setpoint value range.

Figure 64: Signal diagram of timing relay, off-delayed (with and without random switching)

1: Trigger coil TTx
2: Stop coil HTx
3: Reset coil RTx
4: Switching contact (n/o contact) Tx
t_{s} : Setpoint time

- Range A: The time elapses after the trigger coil is deactivated.
- Range B: The stop coil stops the time from elapsing.
- Range C: The reset coil resets the relay and the contact. After the reset coil drops out, the relay continues to work normally.
- Range D: The reset coil resets the relay and the contact when the function block is timing out.

Figure 65: Signal diagram of timing relay, off-delayed (with/without random switching with retriggering)

Range E : The trigger coil drops out twice. The actual time t_{1} is cleared and the set time ts elapses completely (retriggerable switch function).

Timing relay, on- and off-delayed with and without random switching

Time value I1: on-delay time
Time value I2: off-delay time
Random switching: The contact of the timing relay switches randomly within the setpoint value ranges.

Figure 66: Signal diagram timing relay, on and off-delayed 1
1: Trigger coil TTx
2: Stop coil HTx
3: Reset coil RTx
4: Switching contact (n/o contact) Tx
t_{51} : Pick-up time
t_{52} : Drop-out time

- Range A: The relay processes the two times without any interruption.
- Range B : The trigger coil drops out before the on-delay is reached.
- Range C: The stop coil stops the timeout of the on-delay.
- Range D: The stop coil has no effect in this range.

Figure 67: Signal diagram timing relay, on and off-delayed 2

- Range E: The stop coil stops the timeout of the off-delay.
- Range F: The reset coil resets the relay after the on-delay has elapsed
- Range G: The reset coil resets the relay and the contact whilst the on-delay is timing out. After the reset coil drops out, the time elapses normally.

Figure 68: Signal diagram timing relay, on- and off-delayed 3

- Range H : The Reset signal interrupts the timing out of the set time.

Timing relay, single pulse

Figure 69: Signal diagram of timing relay, single pulse 1
1: Trigger coil TTx
2: Stop coil HTx
3: Reset coil RTx
4: Switching contact (n/o contact) Tx

- Range A : The trigger signal is short and is lengthened
- Range B : The trigger signal is longer than the set time.
- Range C : The stop coil interrupts the timing out of the set time.

Figure 70: Signal diagram timing relay, pulse shaping 2

- Range D : The reset coil resets the timing relay.
- Range E: The reset coil resets the timing relay. The trigger coil is still activated after the reset coil has been deactivated and the time is still running.

Timing relay, flashing

You can set the mark-to-space ratio to $1: 1$ or $\neq 1: 1$.
Time value I1: mark time
Time value I2: space time
Mark-to-space ratio = 1:1 flashing: S1 equals S2.
Mark-to-space ratio $=1: 1$ flashing: S1 not equal S2.

Figure 71: Timing relay signal diagram, flashing
1: Trigger coil TTx
2: Stop coil HTx
3: Reset coil RTx
4: Switching contact (n/o contact) Tx

- Range A: The relay flashes for as long as the trigger coil is activated.
- Range B: The stop coil interrupts the timing out of the set time.
- Range C: The reset coil resets the relay.

Examples timing relay

Example: Timing relay, on-delayed
In this example a conveyor starts 10 s after the system is powered up.

Circuit diagram display Parameter settings of timing relay T1

T1X X \% +	
I1	10.00
12	

Example: Timing relay, off-delayed

The off-delayed function is used to implement a rundown time on the conveyor if required.

Circuit diagram display Parameter settings of timing relay T2

Tamet	
I	30.00

Example: Timing relay, on- and off-delayed

The on/off-delayed function is used to implement the delay of both the startup and the disconnection if required.

Circuit diagram display Parameter settings of timing relay T3

II 10.0日
II $5 \| .1011$

Example: Timing relay, single pulse

The input pulses present may vary in length. These pulses must be normalised to the same length. The single pulse function can be used very simply to implement this.

Circuit diagram display
Parameter settings of timing relay T4

Example: Timing relay, flashing

This example shows a continuous flash pulse function.
Outputs Q3 or Q4 flash according to the marker states of M8 or M9.

Circuit diagram display Parameter settings of timing relay T5

T	:	
1	प2. $10 \\|$	
	明.0]	

Example: On-delayed timing relay with retentive actual value

Select a retentive timing relay if you wish to retain the actual value of a timing relay, even after a power failure or a change from RUN to STOP.

Select the required timing relay in the SYSTEM $\ldots \rightarrow$ RETENTION... menu.

The example shows the timing relays T7, T8 as retentive timing relays. Markers M9 to M12 were also selected as retentive.

C1コーE16
T 1
T
THE T1G
■1- - -
Circuit diagram display Parameter settings of timing relay T8

TH X M:	
II	$15: 10$
II	

Figure 72: Function of the circuit
1: Power supply
2: Status of marker M9 and thus trigger signal T8
3: Status of n/o contact T8

Jumps

Jumps can be used to optimise the structure of a circuit diagram or to implement the function of a selector switch. Jumps can be used for example to select whether manual/ automatic operation or other machine programs are to be set.
You integrate " : 1 " jumps into your circuit in the form of a contact and coil. Jumps consist of a jump location and a jump label.

Contact	Coil
: 1 to: : (can only be used as first leftmost contact)	
	[: 1 to [:

Function

If the jump coil is triggered, the rungs after the jump coil are no longer processed. The states of the coils before the jump will be retained, unless they are overwritten in rungs that were not missed by the jump. Jumps are always made forwards, i.e. the jump ends on the first contact with the same number as that of the coil.

- Coil = Jump when 1
- Contact only at the first leftmost contact = Jump label

The jump label contact point is always set to " 1 ".
Backward jumps are not possible with the logic relay due to the way it operates.

If the jump label does not come after the jump coil, the jump will be made to the end of the circuit diagram. The last rung will also be skipped.

Multiple use of the same jump coil and jump contact is possible as long as this is implemented in pairs, i.e.: Coil \mathbb{L} : 1 /jumped range/Contact:1,Coil \mathbb{I} : 1 /jumped range/Contact : 1 etc.

Attention!

If circuit connections are skipped, the states of the coils are retained. The time value of timing relays that have been started will continue to run.

Power flow display

Jumped sections are indicated by the coils in the power flow display.

All coils after the jump coil are shown with the symbol : of the jump coil.

Example

A selector switch allows two different sequences to be set.

- Sequence 1: Switch on motor 1 immediately.
- Sequence 2: Switch on Guard 2, wait time, then switch on motor 1.

Contacts and relays used:

- I1 sequence 1
- 12 sequence 2
- 13 guard 2 moved out
- 112 motor-protective circuit-breaker switched on
- Q1 motor 1
- Q2 guard 2
- T1 wait time 30.00 s, on-delayed
- D1 text "Motor-protective circuit-breaker tripped"

Circuit diagram:

$\begin{array}{ll} \\ \hline F Q \end{array}$
[:
2----------5]
Q2-II-----TT3
T3---------50
12---------

Power flow display: I1 selected:

Section from jump label 1 processed.
Jump to label 8.
Section to jump label 8 skipped.

Jump label 8, circuit diagram processed from this point on.

Year time switch

Types CL-LSR.C.../CL-LST.C... and CL-LMR.C.../CL-LMT.C... are provided with a real-time clock that can be used as a 7-day time switch and year time switch in the circuit diagram. If you have to implement special on and off switching functions on public holidays, vacations, company holidays, school holidays and special events, these can be implemented easily with the year time switch.

\longrightarrow

The procedure for setting the time is described under section "Setting date and time" on Page 205.

The logic relay offers eight year time switches Y 1 to Y 8 for up to 32 switch times.

Each time switch has four channels which you can use to set four different on and off times. The channels are set via the parameter display.

The time and date are backed up in the event of a power supply failure and continue to run. This means that it will continue to run in the event of a power failure, although the time switch relays will not switch. When the device is in a de-energized state, the timer contacts remain open. Refer to section "Technical data", Page 256, for information on the buffer time.

\longrightarrow

The clock module integrated in the logic relay works within the date range 01.01.2000 to 31.12.2099.

Wiring of a year time switch

A year time switch can be integrated into your circuit in the form of a contact.

The coils and contacts have the following meanings:
Contact Coil

Y 1 to YB

Contact of the year time switch

	Parameter display and parameter set for year time switch	
	VI	Year time switch function relay 1
	$\begin{aligned} & \mathrm{A}, \mathrm{E}: \\ & \mathrm{E}: \mathrm{D} \end{aligned}$	Time switch channels
	+	- + appears in the PARAMETER menu. - - does not appear in the PARAMETER menu
	0 N	On date: day, month, year (two-digit $2004=04$)
	OFF	Off date: day, month, year (two-digit $2004=04$)

The parameter display for a year time switch is used to modify the on time, the off time and to enable the parameter display.

Table 13: On and off times

Parameters	Meaning	Meaningful values	
xx.--. 00	Date, day		01 to 31
	Month		01 to 12
	Year, two-digit		00 to 99

Parameter display in RUN mode:

V1	m +	- Selected channel
OW	[1. 111.04	- On time
OF'm	-1.12.14	- Off time
㗊		- - Contact has not switched.

Changing time switch channel

You can the change time switch channel in either RUN or STOP mode by selecting the channel required with the cursor buttons $\wedge \vee$.
Example:

Y4 H +
 ON 01.01.04
 OFF 31.10 .144

!

- Press the \wedge button to move the cursor to channel \mathbf{E}.

Press the $>$ button to reach any value that can be edited.

Important input rules.
The year time switch only operates properly by observing the following rules.

The on year must not be later than the off year.
ON and OFF times must have the same parameters.
Example: ON = Year, OFF = Year; ON = Year/Month, OFF = Year/Month

Entry rules

The following nine entry rules are possible.
Display format: $\mathrm{XX}=$ digit used

Rule 1
ON: Day
OFF: Day

Y1	$\mathrm{H} \quad+$	Rule 4
W		ON: Day/month
QF	KX. XK.	OFF: Day/month

YH	H	+	Rule 6
ON	$\mathrm{XX} . \mathrm{XX} . \mathrm{XX}$	ON: Day/month/year	
OFF	$\mathrm{XX.XX.XX}$	OFF: Day/month/year	

Channel D OFF: Day/month/year
With this rule, the same year number must be entered in each channel in the ON and OFF entry area.

Rule 9

Overlapping channels:
The first ON date switches on and the first OFF date switches off.

Function of the year time switch

The year time switch can switch ranges, individual days, months, years or combinations of all three.

Years

ON: 2002 to OFF: 2010 means: Switch on at 00:00 on 01.01.2002 and switch off at 00:00 on 01.01.2011.

Months

ON: 04 to OFF: 10 means:
Switch on at 00:00 on 1 April and switch off at 00:00 on 1
November

Days

ON: 02 to OFF: 25 means:
Switch on at 00:00 on day 2 and switch off at 00:00 day 26
Avoid incomplete entries. It hinders transparency and leads to unwanted functions.

Example: Selecting year range

The year time switch Y1 is required to switch on at 00:00 on January 12004 and stay on until 23:59 December 312005.

Example: Selecting month ranges

The year time switch Y 2 is required to switch on at 00:00 on March 1 and stay on until 23:59 September 30.

Circuit diagram display Parameter settings of the year time switch Y2

Example: Selecting day ranges

The year time switch Y3 is required to switch on at 00:00 on day 1 of each month and switch off at 23:59 on day 28 of each month.

Circuit diagram display
Parameter settings of the year time switch Y3

Y		A	+
		1.	
	2 B	日.	

Example: Selecting public holidays

The year time switch Y4 is required to switch on at 00:00 on day 25.12 of each year and switch off at $23: 59$ on day 26.12 of each year. "Christmas program"

Circuit diagram display

Parameter settings of the year time switch Y4

Example: Selecting a time range

The year time switch Y 1 is required to switch on at 00:00 on day 02.05 of each year and switch off at $23: 59$ on day 31.10 of each year. "Open air season"

Circuit diagram display
Parameter settings of the year time switch Y 1

Example: Overlapping ranges

The year time switch Y 1 channel C switches on at 00:00 on day 3 of months $5,6,7,8,9,10$ and remains on until 23:59 on day 25 of these months.

The year time switch Y 1 channel D switches on at 00:00 on day 2 of months $6,7,8,9,10,11,12$ and remains on until 23:59 on day 17 of these months.

Total number of channels and behaviour of the contact Y 1 : The time switch will switch on at 00:00 from 3 May and off at 23:59 on 25 May.
In June, July, August, September, October, the time switch will switch on at 00:00 on day 2 of the month and switch off at $23: 59$ on day 17 .
In November and December, the time switch will switch on at 00:00 on day 2 of the month and switch off at 23:59 on day 17 .

Master reset

The master reset function relay enables you to set with one command the status of the markers and all outputs to " 0 ". Depending on the operating mode of this function relay, it is possible to reset the outputs only, or the markers only, or both. Three function blocks are available.

Wiring of the master reset function relay

You integrate a master reset function relay into your circuit in the form of a contact and coil.

The coils and contacts have the following meanings:

Contact	Coil	
Z1 to 2 ?		Contact of the master reset
	[Z] to [Z]	Coil of the master reset

Operating modes

The different coils of the master reset have different operating modes

- Z1: For Q outputs: controls outputs Q1 to Q8 and S1 to S8.
- Z2: For markers M, N: controls the marker range M1 to M16 and N1 to N16.
- Z3: for outputs and markers: controls Q1 to Q8, S1 to S8, M1 to M16 and N1 to N16.

Function of the master reset function relay

A rising edge or the 1 signal on the coil will reset the outputs or markers to 0 , depending on the operating mode set. The location of the coil in the circuit diagram is of no importance. The master reset always has the highest priority.

The contacts Z 1 to Z 3 follow the status of their own coil.

Example: Resetting outputs

All outputs that you have used can be reset to 0 with one command.

A rising edge at the coil of $Z 1$ will cause all Q and S outputs to be reset.

Example: Resetting markers

 14.

All markers that you have used can be reset to 0 with one command.

A rising edge at the coil of $\mathrm{Z2}$ will cause all markers M and N to be reset.

I2-|N1-T1-ES

14.
$11-\cdots=-\cdots$

TH-H1- - - - ml
N4-H5-m- - MN

Basic circuits

Example: Resetting outputs and markers

All outputs and markers that you have used can be reset to 0 with one command.

A rising edge at the coil of $\mathrm{Z3}$ will cause all Q and S outputs and all M and N markers to be reset.

The values in the logic table have the following meanings

For switching contacts:

- $0=n / 0$ contact open, n / c contact closed
- 1 = n/o contact closed, n/c contact open

For Q...: relay coils

- 0 = coil not energized
- 1 = coil energized

Negation (contact)

Negation means that the contact opens rather than closes when it is actuated (NOT circuit). In the CL circuit diagram, press the ALT button to toggle
 contact I1 between n / c and n / o contact.

Table 14: Negation

Negation (coil)

Negation means in this case that the coil opens when the n/o contact is actuated (NOT circuit).
In the CL circuit diagram example, you only change the coil
 function

Table 15: Negation

I1	Q1
1	0
0	1

Maintained contact

To energize a relay coil continuously, make a connection of all contact fields from the coil to the leftmost position.

Table 16: Maintained contact

Series circuit

Q1 is controlled by a series circuit consisting of three
IT-T2-T:-401
$\overline{71-75-50}$ n/o contacts (AND circuit).

Q2 is controlled by a series circuit consisting of three n / c contacts (NOR circuit).

In the CL circuit diagram, you can connect up to three n/o or n / c contacts in series within a rung. Use M marker relays if you need to connect more than three n/o contacts in series.

Table 17: Series circuit

11	12	I3	Q1	Q2
0	0	0	0	1
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	0

Parallel circuit

Q1 is controlled by a parallel circuit consisting of several
 n/o contacts (OR circuit).

A parallel circuit of n / c contacts controls Q2 (NAND circuit).
Table 18: Parallel circuit

11	12	13	Q1	Q2
0	0	0	0	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0

Parallel circuit operating like a series connection of n/o contacts

A series circuit with more than three contacts (n/o contacts) can be implemented with a parallel circuit of n / c contacts on a negated coil.

In the CL circuit diagram you can switch as many rungs in parallel as you have rungs available.

Table 19: Parallel connection of n / c contacts on a negated coil

11	12	13	14	15	Q1
0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	1	0	0
0	0	0	1	1	0
0	0	1	0	0	0
0	0	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	0	0	1	0
0	1	0	1	0	0
0	1	0	1	1	0
0	1	1	0	0	0
\ldots	\ldots	\ldots	\ldots	\ldots	0
...	...	\ldots	\ldots	\ldots	0
1	1	1	1	1	1

Parallel circuit operating like a series connection of n/c contacts

A series circuit with more than three contacts (n/c contacts) can be implemented with a parallel connection of n/o contacts on a negated coil.

In the CL circuit diagram you can switch as many rungs in parallel as you have rungs available.

Table 20: Parallel connection of n / o contacts on a negated coil

11	12	13	14	15	Q1
0	0	0	0	0	1
0	0	0	0	1	0
0	0	0	1	0	0
0	0	0	1	1	0
0	0	1	0	0	0
0	0	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	0	0	1	0
\ldots	\ldots	\ldots	\ldots	\ldots	0
\ldots	\ldots	\ldots	\ldots	\ldots	0
1	1	1	1	1	0

Two-way circuit

A two-way circuit is made in the logic relay using two series connections that are combined to form a parallel circuit (XOR).

An XOR circuit stands for an "Exclusive Or" circuit. The coil is only energized if one contact is activated.

Table 21: Two-way circuit (XOR)

$\mathbf{I 1}$	$\mathbf{I 2}$	$\mathbf{Q 1}$	
0		0	0
0		1	1
1		0	
1		1	

Self-latching

S1 n/o contact at I1 S2 n/c contact at I2

A combination of a series and parallel connection is used to wire a latching circuit.

Latching is established by contact Q1 which is connected in parallel to I1. If I1 is actuated and reopened, the current flows via contact Q1 until I2 is actuated.

Table 22: Self-latching

11	12	Contact Q1	Coil Q1
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

Latching circuits are used to switch machines on and off. The machine is switched on at the input terminals via n/o contact S1 and is switched off via n/c contact S2.

S2 breaks the connection to the control voltage in order to switch off the machine. This ensures that the machine can be switched off, even in the event of a wire break. I2 is always closed when not actuated.

S1 n/o contact at I1 S2 n/c contact at I2

Alternatively the latching circuit can also be set up with the wire break function using the "Set" and "Reset" coil functions.

Coil Q1 latches if 11 is activated. 12 inverts the n / c contact signal of S2 and only switches if S2 is activated in order to disconnect the machine or in the event of a wire break.

Make sure that both coils are wired up in the correct order in the CL circuit diagram: first wire the S coil and then the R coil. This will ensure that the machine will be switched off when I2 is actuated, even if I1 is switched on.

Impulse relay

An impulse relay is often used for controlling lighting, such as stairwell lighting.

Table 23: Impulse relay

| I1 | Status of
 Q1 | Q1 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 |
| $\frac{0}{1}$ | $\frac{1}{0}$ | $\frac{1}{1}$ |
| 1 | $\frac{1}{1}$ | 0 |

Cycle pulse on rising edge

You can create a cycle pulse on a rising edge if you use the appropriate coil function.

This is very useful for count pulses, jump pulses.

Table 24: Cycle pulse on rising edge

I1	Status of Q1 cycle \boldsymbol{n}	Status of Q1 cycle $\mathbf{n}+\mathbf{1}$
0	0	0
1	1	0
0	0	0

Cycle pulse on falling edge

You can create a cycle pulse on a falling edge if you use the
 appropriate coil function.

This is very useful for count pulses, jump pulses.
Table 25: Cycle pulse on falling edge
S1 n/o contact at I1

I1	Status of Q1 cycle \mathbf{n}	Status of Q1 cycle $\mathbf{n}+\mathbf{1}$
1	0	0
0	1	0
1	0	0

Circuit examples

Star-delta starting

Two star-delta circuits can be obtained with the logic relay. The advantage of the logic relay is that you can select any changeover time between star and delta contactors and any wait time between switching off the star contactor and switching on the delta contactor.

Figure 73: Star-delta circuit with conventional contactors

Figure 74: Star-delta circuit with the logic relay

Function of the CL circuit diagram:

Start/Stop of circuit with the external actuators S1 and S2.

Ti----- CN T1----002 $-T 2----[02$

The mains contactor starts the timing relay in the logic relay.

- I1: Mains contactor switched on
- Q1: Star contactor ON
- Q2: Delta contactor ON
- T1: Star-delta changeover time (10 to $30 \mathrm{~s}, \mathrm{X}$)
- T2: Wait time between star off, delta on (30, 40, 50, $60 \mathrm{~ms}, \mathrm{X}$)

If your logic relay has an integral time switch, you can combine star-delta starting with the time switch function. In this case, use the logic relay to switch the mains contactor as well.

4x shift register

You can use a shift register for storing an item of information, such as for the sorting of parts into good and bad, for two, three or four transport steps further on.

A shift pulse and the value (0 or 1) to be shifted are needed for the shift register.

The shift register's reset input is used to clear any values that are no longer needed. The values in the shift register go through the register in the order: 1st, 2nd, 3rd, 4th storage location.

Figure 75: Block diagram of the 4 x shift register

Circuit examples

Table 26: Shift register

Pulse	Value	Storage position			
		1	2	3	4
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	0
4	1	1	0	0	1
5	0	0	1	0	0
Reset $=1$		0	0	0	0

Assign the information "bad" to value 0 . If the shift register is cleared accidentally, no bad parts are used further.

- 11: Shift pulse (PULSE)
- 12: Information (good/bad) to be shifted (VALUE)
- I3: Clear content of the shift register (RESET)
- M1: 1st storage location
- M2: 2nd storage location
- M3: 3rd storage location
- M4: 4th storage location
- M7: Marker relay for cycle pulse
- M8: Cyclical pulse for shift pulse

Figure 76: CL circuit diagram shift register

How does the shift register work?

The shift pulse is activated for exactly one cycle. To do this, the shift pulse is generated by evaluating the change from II OFF to I1 ON - the rising edge.

The cyclical processing of the logic relay is used to trigger the shift pulse.

When I1 is activated for the first time, the marker relay n / c contact M7 is closed during the first pass through the cycle. Thus, the series circuit consisting of I1, n/c contact M7 (closed) and M8 is activated. Although M7 is now also activated, this does not yet have any effect on contact M7.

The contact of M 8 (n / o contact) was still open during the first cycle so a shift pulse cannot yet be generated. When the relay coil M8 is activated, the logic relay transfers the result to the contacts.

In the second cycle n / c contact M7 is open. The series circuit is opened. The contact M8 is activated from the result of the first cycle. Now, all the storage locations are either set or reset in accordance with the series circuit.

If the relay coils were activated, the logic relay transfers the result to the contacts. M8 is now open again. No new pulse can be formed until I1 has opened, since M7 is open for as long as 11 is closed.

How does the value reach the shift register?

When shift pulse M8 = ON, the state of I2 (VALUE) is transferred to storage location M1.

If I 2 is activated, M 1 is set. If I 2 is deactivated, M 1 is deactivated via n / c contact I 2 .

How is the result shifted?

The logic relay activates the coils in accordance with the rung and its result, from top to bottom. M4 assumes the value of $M 3$ (value 0 or 1) before M3 assumes the value of M2. M3 assumes the value of M2, M2 the value of M1 and M1 the value of I 2 .

Why are the values not constantly overwritten?
In this example, the coils are controlled only by the S and R functions, i.e. the values are retained in on or off states even though the coil is not constantly activated. The state of the coil changes only if the rung up to the coil is activated. In this circuit, the marker relay is therefore either set or reset. The rungs of the coils (storage locations) are only activated via M8 for one cycle. The result of activating the coils is stored in the logic relay until a new pulse changes the state of the coils.

How are all the storage locations cleared?

When I3 is activated, all the R coils of storage locations M1 to M4 are reset, i.e. the coils are deactivated. Since the reset was entered at the end of the circuit diagram, the reset function has priority over the set function.

How can the value of a storage location be transferred?
Use the n / o or n / c contact of storage locations M1 to M4 and wire them to an output relay or in the circuit diagram according to the task required.

Running light

An automatic running light can be created by slightly modifying the shift register circuit.

One relay is always switched on. It starts at Q1, runs through to Q4 and then starts again at Q1.

The marker relays for storage locations M1 to M4 are replaced by relays Q1 to Q4. The shift pulse I1 has been automated by the flasher relay T1. The cycle pulse M8 remains as it is.
1100.5010

On the first pass, the value is switched on once by n/c contact M9. If Q1 is set, M9 is switched on. Once Q4 (the last storage location) has been switched on, the value is passed back to Q1.

Change the times.

Figure 77: CL running light circuit diagram

Circuit examples

Stairwell lighting

For a conventional circuit you would need at least five space units in the distribution board, i.e. one impulse relay, two timing relays and two auxiliary relays.

The logic relay requires only four space units. A fully functioning stairwell lighting system can be set up with five terminals and the CL circuit diagram.

Figure 78: Conventional stairwell lighting
$\rightarrow \quad \begin{aligned} & \text { Up to twelve such stairwell circuits can be implemented } \\ & \text { with one } \mathrm{CL} \text { device. }\end{aligned}$

Figure 79: Stairwell lighting with the logic relay

Button pressed briefly	Light ON or OFF. The impulse relay function will even switch off continuous lighting.
	Light switches off automatically after 6 min.; with continuous lighting this function is not active.
Button pressed for more than 5 s	Continuous lighting

The CL circuit diagram for the above functions is as follows:

The enhanced CL circuit diagram: after four hours, the continuous lighting is also switched off.

Figure 80: CL circuit diagram for stairwell lighting

Meaning of the contacts and relays used:

- I1: ON/OFF pushbutton
- Q1: Output relay for light ON/OFF
- M1: Marker relay. This is used to block the "switch off automatically after 6 minutes" function for continuous lighting.
- T1: Cycle pulse for switching Q1 on and off, (Ill, single-pulse with value 00.00 s)
- T2: Scan to determine how long the button was pressed. If pressed longer than 5 s , continuous lighting is switched on (X, on-delayed, value 5 s).
- T3: Switch off after a lighting time of 6 min . (X , on-delayed, value 06:00 min).
- T4: Switch off after 4 hours continuous lighting (X , on-delayed, value 04:00 h).

If you are using the logic relay with a time switch, you can define both the stairwell lighting and the continuous lighting periods via the time switch.

If you use the logic relay with analog inputs, you can optimise the stairwell lighting with a brightness sensor to suit the lighting conditions.

5 CL settings

All CL settings can only be carried out on models provided with keypad and LCD display.

CL-SOFT can be used to set all models via the software.

Password protection

The logic relay can be protected by a password against unauthorised access.

In this case the password consists of a value between 000001 and 999999. The number combination 000000 is used to delete a password.

\rightarrow

Factory setting:
0000, no password present and none active, circuit diagram area selected.

Password protection inhibits access to selected areas. The system menu is always protected when a password is activated.

The password can protect the following entries and areas:

- Start or modification of the program
- Transfer of a circuit diagram to the memory module
- Change of the RUN or STOP mode.
- Calling and modification of function block parameters
- All settings of the real-time clock.
- Modifications of all system parameters.
- Communication with the individual device
- Disabling of the password delete function.

A password that has been entered in the logic relay is transferred to the memory module together with the circuit diagram，irrespective of whether it was activated or not．

If this CL circuit diagram is loaded back from the memory module，the password will also be transferred to the logic relay and is activated immediately．

Password setup

A password can be set up via the system menu in either RUN or STOP mode．You cannot change to the system menu if a password is already activated．
－Press DEL and ALT to call up the system menu．
－Select the menu option SECURITY．．．to enter the password．
－Press the OK button and move to the PASSWORD．．． menu．
－Press OK again to enter the Password entry mode．

ENTEF FAESU
 䕎 KX

If no password has been entered，the logic relay changes directly to the password display and displays four XXXX characters：No password present．
－Press OK，four zeros will appear
－Set the password using the cursor buttons：
$-\langle \rangle$ select position in the password，
－ヘン set a value between 0 to 9 ．
－Save the new password by pressing OK．
Use OK to exit the password display and proceed with ESC and \vee to the RANGE．．．menu．

The scope of the password has not yet been defined．The password is now valid but not yet activated．

Selecting the scope of the password - Press the OK button.

WIEMUTT DIFE. + FHPHNETETE ELOUK OFPTNE MODE

 INTEFFATE DELETE FINWT- Select the function or the menu to be protected.
- Press the OK button in order to protect the function or menu (tick = protected).
$\rightarrow \quad$ Standard protection encompasses the programs and circuit diagram.
At least one function or menu must be protected.
- CIRCUIT DIAG: The password is effective on the program with circuit diagram and non-enabled function relays.
- PARAMETER: The PARAMETER menu is protected.
- CLOCK: Date and time are protected with the password.
- OPERATING MODE: The toggling of the RUN or STOP operating mode is protected.
- INTERFACE: The interface is disabled for access with CL-SOFT.
- DELETE FUNCT: The question DELETE PROG? will appear on the device after four incorrect password entries have been made. This prompt is not displayed if selected. However, it is no longer possible to make changes in protected areas if you forget the password.

Activating the password

You can activate a valid password in three different ways:

- automatically when the logic relay is switched on again
- automatically after a protected circuit diagram is loaded
- via the password menu.
- Press DEL and ALT to call up the system menu.
- Open the password menu via the SECURITY... menu The logic relay will only show this password menu if a

THFWEE FW

 RWTUATE password is present.

Make a note of your password before activating it. If the password is no longer known, the logic relay can be unlocked (DELETE FUNCT is not active), but the circuit diagram and data settings are lost. The interface must not be disabled.

Attention!

The following applies if the password is not known or is lost and the delete password function is disabled: The device can only be reset to the factory setting at the manufacturers. The program and all data will be lost.

Select ACTIVATE PW and press OK.

The password is now active. The logic relay will automatically return to the status display.

You must unlock the logic relay with the password before you implement a protected function, enter a protected menu or the system menu.

Unlock logic relay

Unlocking the logic relay will deactivate the password. You can reactivate password protection later via the password menu or by switching the power supply off and on again.

- Press OK to switch to the main menu.

The PASSWORD... entry will flash.

- Press OK to enter the password entry menu.

ETOF FUN γ FHENDFD. . I陳
ENTEF FHESM

- Set the password using the cursor buttons:
- Confirm with OK.

If the password is correct, the logic relay will return automatically to the status display.
The PROGRAM... menu option is now accessible so that you can edit your circuit diagram.

The system menu is also accessible.

Changing or deleting the password range

- Unlock the logic relay
- Press DEL and ALT to call up the system menu.
- Open the password menu via the menu option SECURITY \rightarrow PASSWORD...

The CHANGE PW entry will flash.
The logic relay will only show this menu if a password is present.

- Modify the four password digits using the cursor buttons.
- Confirm with OK.

Press ESC to exit the security area.

Delete

Use number combination 000000 to delete a password.
If a password has not been entered already, the logic relay will show four XXXX.

Password incorrect or no longer known

If you no longer know the exact password, you can try to reenter the password several times.

The DELETE FUNCT function has not been deactivated.
Have you entered an incorrect password?

ENTE FHESU

- Re-enter the password.

After the fourth entry attempt the logic relay will ask whether you wish to delete the circuit diagram and data.

- Press
- ESC: Circuit diagram, data or password are not deleted.
- OK: Circuit diagram, data and password are deleted.

The logic relay will return to the status display.
If you no longer know the exact password, you can press OK to unlock the protected logic relay. The saved circuit diagram and all function relay parameters will be lost.

Pressing ESC will retain the circuit diagram and data. You can then make another four attempts to enter the password.

Changing the menu language

CL-LSR/CL-LST and CL-LMR/CL-LMT provide twelve menu languages which are set as required via the system menu.

Language	Display
English	ENGLISH
German	DEUTSCH
French	FRFNEAIS
Spanish	EPFMNOL
Italian	ITALIFNO
Portuguese	FORTUEUES
Dutch	NEDEFLFNDS
Swedish	SUENSKA
Polish	FOLSKI
Turkish	TIPKEE
Czech	EESY
Hungarian	MAGVAF

Language selection is only possible if the logic relay is not password-protected.

- Press DEL and ALT to call up the system menu.
- Select LANGUAGE... to change the menu language.

ENELEH 中
 DEUTSMH
 FFHNEFIS
 EFFHNOL +

ITHLITHO
FOPTUGES
WEOETLPHOS
SUENEKA
FOLEKI
TUFKE
EESY
MFIVAF

The language selection for the first entry ENGLISH is displayed.

- Use \wedge or \vee to select the new menu language, e.g. Italian (ITALIANO).
- Confirm with OK. ITALIANO is assigned a tick.
- Exit the menu with ESC.

The logic relay will now show the new menu language.
Press ESC to return to the status display.

Changing parameters

The logic relay allows you to change function relay parameters such as timing relay setpoint values and counter setpoints without having to call up the circuit diagram. This is possible regardless of whether the logic relay is running a program or is in STOP mode.

- Press OK to switch to the main menu.
- Start the parameter display by selecting PARAMETER.

All function relays are displayed as a list.

T\# I.	$3+$
TAX	M: ${ }^{\text {S }}$
W 4	+
01	+
92	+
H1 E0	+
HE LT	+

The following preconditions must be fulfilled in order for a parameter set to be displayed:

- A function relay must have been included in the circuit diagram.
- The PARAMETER menu must be available.
- The parameter set must have been enabled for access, indicated by the + character at the bottom right of the display.

\rightarrow

You can enable or disable parameter access using the " + " or "-" parameter set characters in the circuit diagram.

- Select the required function block with \wedge or \vee.

T\#	\Perp
11	【2.030
12	15.400
	:

- Press the OK button.
- Use the cursor buttons \wedge or \vee to scroll through the parameters.
Change the values for a parameter set:
- Press OK to enter the Entry mode,
- Press < > to change decimal place
- Press $\wedge \vee$ to change the value of a decimal place,
- Press OK to save constants or
- ESC Retain previous setting.

Press ESC to leave the parameter display.

Adjustable parameters for function relays

You can also modify the function relay parameters used in the circuit diagram in the PARAMETER menu.

Adjustable setpoint values are:

- With all function relays the setpoints
- On and off times with time switches.

In RUN mode the logic relay operates with a new setpoint as soon as it has been modified in the parameter display and saved with OK.

Example: Changing switch times for outdoor lighting The outdoor lighting of a building is automatically switched on from 19:00 to 23:30 Mondays to Fridays in the CL circuit diagram.

吅	11： 40
0 N	17：110
FF	23：30

OFF 2：3：
The parameter set for the time switch function relay 1 is saved in channel A and looks like this．

From the following weekend，the outdoor lighting is now also required to switch on between 19：00 and 22：00 on Saturdays．
－Select PARAMETER from the main menu．
The first parameter set is displayed．
－Use＾or \vee to scroll through the parameter sets until channel A of time switch 1 is displayed．
－Press＾to select the next empty parameter set，in this case channel B of time switch 1 ．

The current time is 11：30．
－Change the value for the day interval from MO to SA：
－＜＞Move between the parameters
－ヘン Change value．
－Press OK to acknowledge the value SA．

Change the ON value to 19：00．

－Move to the value of ON
－Press OK．
－＜＞Move between the parameters
－ヘン Change value．
Press OK to acknowledge the value 19：00．
－Set the switching off time to 22：00．
－Press OK．
The logic relay will save the new parameters．The cursor will remain in the contact field on channel identifier B．

Press ESC to leave the parameter display．
The time switch will now also switch on at 19：00 on Saturdays and switch off at 22：00．

Setting date and time

Some CL－LSR／CL－LST and CL－LMR／CL－LMT devices are provided with a real－time clock with date and time functions． Type designation CL－LSR．C．．．／CL－LST．C．．．and CL－LMR．C．．．／ CL－LMT．C．．．The time switch function relays can thus be used to implement time switch applications．

Factory setting：
＂SA 0：01 01．05．2004＂

Setting the time

If the clock is not yet set or if the the logic relay is restarted after the backup time has elapsed，the clock will start with the setting＂SA 0：01 01．05．2004＂．The CL clock operates with date and time so that hour，minute，day，month and year have to be set．
－Select SET CLOCK．．．from the main menu．
This will open the menu for setting the time．

EET WLOW

SUlNUETENE
\qquad
HH：剧：1日： 24
00．枓 15.15
YEAF ： $\mathrm{ED日a}$
－Select SET CLOCK and confirm with OK．
－Set the values for time，day，month and year．
－Press the OK button to access the Entry mode．
－＜＞Move between the parameters
－ヘン Change the value of a parameter
－OK Save day and time
－ESC Retain previous setting．
Press ESC to leave the time setting display．

Setting summer time start and end

Most CL models are fitted with a real-time clock. The clock has various possibilities for starting and ending the summer time (DST) setting. These are subject to different legal requirements in the EU, GB and USA.

Factory setting:
No automatic DST setting present
You can make the following settings:

- NONE: no DST setting rule.
- RULE: a user-defined date for the DST change.
- EU: date defined by the European Union; Start: last Sunday in March; End: last Sunday in October:
- GB: date defined in Great Britain; Start: last Sunday in March; End: fourth Sunday in October.
- US: date defined in the United States of America: Start: first Sunday in April; End: last Sunday in October.

The following applies to all legally stipulated DST settings:
Summer time start: On the day of time change, the clock moves forward one hour at 02:00 to 03:00.

Summer time end: On the day of time change, the clock moves back one hour at 03:00 to 02:00.

Select SET CLOCK... from the main menu. This will open the menu for setting the time.

ETT ELOMK

- Select the SUMMER TIME menu option.

Selection of summer time start and end

The logic relay shows you the options for the DST change.
The standard setting is NONE for automatic DST changeover (Tick at NONE).

The start and end of summer time can only be set in STOP mode.

- Select the required variant and press the OK button.

NOHE	/4
FULE	
E	
GE	+

Us

NOME	4
FULE.	
EU	\checkmark
EE	+

The rule for the European Union (EU) has been selected.

Summer time start and end, setting the rule

If you wish to enter your own date, it is important to know what settings are possible.

The start and end of summer time is a complex calculation procedure throughout the world. For this reason, the standard rules for the EU, US, GB are provided in the logic relay.

The following rules normally apply:
Table 27: DST setting rule

When	Weekday	How	Date
DAY	WD		

Rule 1: change on a special date
-- -- -- \rightarrow Table 28

Rule 2: change on a defined day in the month

- 1st (first) • SU (Sunday) MONTH \rightarrow Table 281)
- 2nd (second) - MO (Monday)
- 3rd (third) - TU (Tuesday)
- 4th (fourth) - WE (Wednesday)
- L. (last) - TH (Thursday)
- FR (Friday)
- SA (Saturday)

Rule 3: change on a defined day after or before a date

1st (first)	- SU (Sunday)	• AFTER THE	\rightarrow Table 28
	- MO (Monday)	• BEFORE THE	
	- TU (Tuesday)		
	- WE (Wednesday)		
	- TH (Thursday)		
	- FR (Friday)		
	- SA (Saturday)		

1) Apart from day definitions

Table 28: Date parameters

Day	Month	Hour	Minute	Time difference
DD.	MM	HH:	MM	H:M
-1.	- 1 (January)	- 00	- 00	- + 03:00
- 2.	- 2 (February)	- 01	- 01	- + 02:30
-	- ...	- 02	- 02	- + 02:00
- 31.	- 12 (December)	- 03	- 03	- + 01:30
		- ...	- 04	- + 01:00
		- 23	- ..	- + 00:30
			- 59	- - 00:30
				- - 01:00
				- - 01:30
				- - 02:00
				- - 02:30
				- - 03:00

Example with EU (European Union)

End of summer time
Menu in SUMMER END:
The following rule applies:
The clock goes back one hour ($-1: 00$) to 2:00 at 3:00 on the last Sunday in October.

Table 29: EU Summer time end
$\left.\begin{array}{lll|l|l|l|l}\hline \text { When } & \text { Weekday } & \text { How } & \text { Day } & \text { Month } & \text { Hour } & \text { Minute }\end{array} \begin{array}{l}\text { Time } \\ \text { difference } \\ \text { H:M }\end{array}\right]$

Start of summer time
Menu in logic relay SUMMER START:
The following rule applies:
The clock goes forward one hour ($+1: 00$) to 3:00 at 2:00 on the last Sunday in March.

Table 30: EU Start of summer time

| When | Weekday | How | Day | Month | Hour | Minute | Time
 difference |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | WD | | DD. | MM | HH: | MM | H:M |

The following start and times for summer time normally apply throughout the world (as at beginning of 2004):

Table 31: Summer time rules

Country/ Region	Summer time start	Summer time end	Start time ${ }^{1)}$	End time ${ }^{2)}$
Brazil, Rio de Janeiro	1st Sunday in November	1st Sunday after the 15th February	00:00	00:00
Chile, Santiago	1st Sunday after 8th October	1st Sunday after 8th March	00:00	00:00
USA/Antarctic, McMurdo	1st Sunday in October	1st Sunday after 15th March	02:00	02:00
Chatham Islands	1st Sunday in October	1st Sunday after 15th March	02:45	03:45
New Zealand	1st Sunday in October	1st Sunday after 15th March	02:00	03:00
Chile, Easter islands	1st Saturday after 8th October	1st Saturday after 8th March	22:00	22:00
USA/Antarctic, Palmer	1st Sunday after 9th October	1st Sunday after 9th March	00:00	00:00
Iran3)	1st day of Favardin	30th day of Shahrivar	00:00	00:00
Jordan	Last Thursday in March	Last Thursday in September	00:00	01:00
Israel	Special rules according to the Hebrew calendar		01:00	01:00
Australia, Howe Islands	Last Sunday in October	Last Sunday in March	02:04)	02:00
Australia	Last Sunday in October	Last Sunday in March	02:00	03:00

Country/ Region	Summer time start	Summer time end	Start time ${ }^{1)}$	End time ${ }^{2}$)
Georgia	Last Sunday in March	Last Sunday in October	00:00	00:00
Azerbaijan	Last Sunday in March	Last Sunday in October	01:00	01:00
Kirgistan	Last Sunday in March	Last Sunday in October	02:30	02:30
Syria	1st April	1st October	00:00	00:00
Iraq	1st April	1st October	03:00	04:00
Pakistan	1st Sunday after the 2nd April	1st Saturday in October	00:00	00:00
Namibia	1st Sunday in September	1st Sunday in April	02:00	02:00
Paraguay	1st Sunday in September	1st Sunday in April	02:00	00:00
Canada, Newfoundland	1st Sunday in April	Last Sunday in October	00:01	00:01

1) Relevant local time to which the clock should be set forward.
2) Relevant local time to which the clock should be set back.
3) Persian calendar
4) Summer time $=$ standard time +0.5 hours

- Select the RULE menu.

- Press the OK button.

SUNANETE END

The two SUMMER START (start of summer time) and SUMMER END (end of summer time) menus are shown.

SUMMER START: set the DST time for the start of summer. SUMMER END: set the DST time for the end of summer.
$\rightarrow \quad \begin{aligned} & \text { If a standard rule has been selected, this will be accepted } \\ & \text { as the rule. }\end{aligned}$

This menu appears for entering the required time settings：

$$
\begin{aligned}
& \text { MiFY L. W-Rule for day, 1st, 2nd, 3rd, 4th, Lst. } \\
& \text { WI: } \mathrm{ED} \text {-Weekday } \\
& \text { NOWTH - Rule } 2 \text { MONTH, AFTER, BEFORE }
\end{aligned}
$$

> HH: 悱: II: III - Time, hour, minute
> 【IFF: $+\mathbb{1} \mathbb{\|}$-Time difference, summer time always $+x: x x$
> Time difference, winter time always - $\mathrm{x}: \mathrm{xx}$

Enter summer time start．
－Press OK to reach Entry mode for the summer time start

SUNAEE END
The following menu appears：

This will open the menu for setting the time．

	L．${ }^{\text {＋}}$
W｜：	SU
	WTH
0 L	－13

DIFF：＋1：II rule．
－Set the values for DST time change．
－Press the OK button to access the Entry mode．
－ヘン Select required value．
－〈〉 Move between the parameters
－ヘン Change the value of a parameter
－OK Save value．
－ESC Retain previous setting．
Press ESC to leave the DST setting display．
The above rule is the EU rule for the start of summer time．

\rightarrow

The menu for the end of summer time has the same structure．The values are now entered accordingly．
\rightarrow
The DIFF time difference value can be modified both for the summer time setting and the winter time setting．The value is always the same．

Summer time means a positive value $+\mathrm{X}: \mathrm{XX}$ ．
Winter time means a negative value $-\mathrm{X}: \mathrm{XX}$ ．

\rightarrow

Behaviour on 29 February
If the time change is set for 29.02 ．at HH．MM，the switch time for years that are not leap years will occur on 01.03 at HH．MM．

The DST time minus the time difference should not go into 28．02．The following applies：
$00: 15$ is put back by -30 min ．New time：28．02．23：45
Behaviour for summer time end on 01．01．
If 01．01．is selected for the end of summer time，ensure the following：

The DST time minus the time difference should not go into 31．12．Otherwise the time will continue to run until the set time minus the time difference $0: 00$ on the 01.01 ．The time will then continue to run with 00：00．

Setting the time manually within the summer time end setting:

At 3:00 on summer time end the time is to be put back by one hour to 2:00.

The time is set to $3: 05$ at 1:30. The logic relay interprets this as 3:05 "Winter time". A time change will not be carried out.

Activating input delay (debounce)

Input signals are evaluated by the logic relay with an input delay. This enables, for example, the trouble-free evaluation of switches and pushbutton actuators subject to contact bounce.
$\rightarrow \quad$ Factory setting:
Debounce is activated.
High-speed counter functions are evaluated independently of the debounce function.

In many applications, however, very short input signals have to be monitored. In this case, the debounce function can be switched off.

- Press DEL and ALT to call up the system menu.
- Select the SYSTEM menu.

If the logic relay is password-protected you cannot open the system menu until you have "unlocked" it. The input delay (debounce) is set with the DEBOUNCE menu item.

Activating debounce (input delay)

A tick $\sqrt{ }$ next to DEDNE indicates that this function is activated.

If this is not so, proceed as follows:

- Select DEEMUNE and press OK.

Debounce mode will be activated and the display will show DEEONDE $/$

Press ESC to return to the status display.

Deactivating debounce (input delay)

If the logic relay is showing DEEOUNE in the display, this means that Debounce mode has already been deactivated.

- Otherwise select DEDUNE ${ }^{\prime}$ and press OK.

If Debounce mode is deactivated the display will show DEEOUNE.

How the logic relay input and output signals are processed internally is explained in section "Delay times for inputs and outputs", from Page 230.

Activating and deactivating the P buttons

Even though the cursor buttons (P buttons) have been set as pushbutton actuator inputs in the circuit diagram, this function is not activated automatically. This prevents any unauthorised use of the cursor buttons. The P buttons can be activated in the system menu.
$\rightarrow \quad$ If the logic relay is password-protected you cannot open the system menu until you have "unlocked" it.

The P buttons are not activated.

The P buttons are activated and deactivated via the P BUTTONS menu.

- Press DEL and ALT to call up the system menu.

DEEOUME $\quad \mathrm{i}$ +

F EUTTONE
FUN MODE GAFD MOE +

DEEOUNE $\quad / 4$ F EUTTON: FUN FODE CFPC MOEE

- Select the SYSTEM menu.
- Move the cursor to the P BUTTONS menu.

Activating the P buttons

If the logic relay shows F EUTTONE $/ \mathrm{in}$ the display, the P buttons are active.

- Otherwise select P BUTTONS and press OK.

The logic relay will then show F EUTTONS d and the P buttons will be activated.

- Press ESC to return to the status display.

Function of the P buttons

The P buttons are only active in the status display. In this display you can use the P buttons to activate inputs in your circuit diagram.

If a text is displayed, the P buttons only function if a value entry is not carried out.

Deactivating the P buttons

- Select F EUTTON: $\sqrt{ }$ and press OK.

The logic relay will then show F EUTTON and the P buttons will be deactivated.

Deleting a circuit diagram in the logic relay will cause the P buttons to be deactivated automatically. If a circuit diagram is loaded from the memory module or from CL-SOFT, the status set there is also transferred.

Startup behaviour
The startup behaviour is an important aid during the commissioning phase. The circuit diagram which the logic relay contains is not yet fully wired up, or the system or machine is in a state which the logic relay is not permitted to control. It must not be possible to activate the outputs when the logic relay is connected to the power supply.

Setting the startup behaviour

\rightarrow

The CL models without a display can only be started in RUN mode.

Requirement: the logic relay must contain a valid circuit diagram.

Factory setting:
RUN mode is activated.
Switch to the system menu.
If the logic relay is protected by a password, the system menu will not be available until is the logic relay "unlocked" (\rightarrow section "Unlock logic relay", from Page 199).

Specify the operating mode which the logic relay must use when the supply voltage is applied.

Activating RUN mode

If the logic relay displays FUN V, this means that the logic relay will start in RUN mode when the supply voltage is applied.

- Otherwise select RUN MODE and press OK.

RUN mode is activated. TAFD NODE

- Press ESC to return to the status display.

Deactivating RUN mode

Now

- Select FUN HODE V and press OK. The RUN mode function is deactivated.

The default setting for the logic relay is for FUN MOE to be displayed. In other words, starts in RUN mode when the power is switched on.

Table 32: Startup behaviour

Startup behaviour	Menu displayed	Status of the logic relay after startup
The logic relay starts in STOP mode	FUN MODE	STOP mode
The logic relay starts in RUN mode	FUN MODE	

Behaviour when the circuit diagram is deleted

The startup mode setting is a CL device function. When the circuit diagram is deleted this does not result in the loss of the setting selected.

Behaviour during upload/download to memory module or PC

When a valid circuit diagram is transferred from the logic relay to a memory module or the PC or vice versa, the setting is still retained.

The CL models without a display can only be started in RUN mode.

Possible faults

The logic relay does not start in RUN mode:

- The logic relay does not have a program in it.
- You have selected STOP mode (RUN MODE menu).

Startup behaviour for memory module

The startup behaviour using a memory module is for applications where unskilled personnel have to change the memory module with the logic relay de-energized.

The logic relay will then only start in RUN mode if a memory module with a valid program is fitted.

If the program on the memory module is different to the program in the logic relay, the program on the module is loaded first and the logic relay starts in RUN mode.

$\rightarrow \quad$ Factory setting:

Card mode is not activated.

- Switch to the system menu.

\rightarrow

If the logic relay is protected by a password, the system menu will not be available until the logic relay is "unlocked" $(\rightarrow$ section "Unlock logic relay", from Page 199).

Activate memory module startup

If the logic relay shows FIN NOE will only start up in RUN mode at power on if the memory module fitted contains a valid program.

- Otherwise select MFD MOE and press OK.

The logic relay will start up with the program on the module.

- Press ESC to return to the status display.

Card mode is only possible with the CL-LAS.MD003 memory module. Old MD001 or MD002 memory modules do not support this function.

DeEOUNE / / F EUTTONS
FUN MOEE
Gerb Mode +

Deactivating card mode

The Card mode function is deactivated.
The default setting for the logic relay is for CARD MODE to be displayed. In other words, the logic relay starts in RUN mode when the power is switched on.

Setting the cycle time

The logic relay allows you to fix the cycle time. To do this, move to the SYSTEM menu and from there to the CYCLE TIME... menu.

Factory setting:
The cycle time is set to 00 ms .
The cycle time can only be set in STOP mode.

The entry of a set cycle time is only useful in applications involving two-step controllers or similar functions. With a cycle time setting of 00 ms , the logic relay will process the circuit diagram and the program at the fastest possible speed (see also Inside CL, cycle time).

Set cycle time value range: between 00 and 60 ms .

Retention (non-volatile data storage)

It is a requirement of system and machine controllers for operating states or actual values to have retentive settings. What this means is that the values will be retained safely even after the supply voltage to a machine or system has been switched off and are also retained until the next time the actual value is overwritten.

$\longrightarrow \quad$ Factory setting:

The retention function is not activated.

Permissible markers and function relays

It is possible to retentively store (non-volatile memory) the actual values (status) of markers, timing relays and up/down counters.

The following markers and function relays can be set to have retentive actual values:

- Markers: M9 to M12, M13 to M16, N9 to N16
- Up/down counters: C5 to C7, C8, C13 to C16
- Text function relays: D1 to D8
- Timing relays: T7, T8, T13 to T16

In order to ensure the full compatibility of CL-LSR/CL-LST and CL-LMR/CL-LMT devices with the AC010 devices, the settings for the retentive data were divided into the above areas.

Attention!

The retentive data is kept every time the power supply is switched off. Data security is assured for 1000000 write cycles.

Setting retentive behaviour

Requirement：the logic relay must be in STOP mode．
－Switch to the system menu．

If the logic relay is protected by a password，the system menu will not be available until the logic relay is ＂unlocked＂$(\rightarrow$ section＂Unlock logic relay＂，from Page 199）．
－Switch to STOP mode．
FUN MODE $\sqrt{\prime}$＋\rightarrow Switch to the system menu．
TAPC MODE WWLE－T．．． EETENTION
－Move to the SYSTEM menu and continue to the RETENTION．．．menu．
－Press the OK button．
The first screen display is the selection of the marker range．

	N4－N12 ${ }^{\text {d }}$
	N3－－－W6
	N9－N6
	E－－${ }^{\text {d }}$
	－

－ヘン Select a range．
－Press OK to select the marker，the function relay or the range that is to be retentive（tick on the line）．

Press ESC to exit the input for the retentive ranges．

E1－－W
$\mathrm{D} 1-\mathrm{B}$
T1
TH
TiJ－Tib

	I
	$N+\cdots-N 16$
	$\mathrm{NY-N16}$
	士－－${ }^{\text {d }}$
	回

区I－－－b
■1－【日
T 1
T
THE－TH

Example：
M9 to M12，counters C5 to C7，C8 as well as timing relays T 7 and T 8 are retentive．Indicated by the tick on the line．

The default setting of the logic relay is selected so that no retentive data is selected．In this setting，the logic relay works without retentive actual values if a valid circuit diagram is present．When the logic relay is in STOP mode or has been switched to a de－energized state，all actual values are cleared．

Deleting retentive actual values

The retentive actual values are cleared if the following is fulfilled (applies only in STOP mode):

- The program's retentive actual values are reset to 0 when it is transferred to the logic relay from CL-SOFT or from the memory module. This also applies when there is no program on the memory module, in which case the old circuit diagram is retained in the logic relay.
- When the selected retentive markers, function relays or text display are deactivated.
- When the circuit diagram is deleted via the DELETE FUNCT menu.
The operating hours counters are always retentive. The actual values can only be reset by means of a special reset operation from the circuit diagram.

Transferring retentive behaviour

The setting for retentive behaviour is a circuit diagram setting; in other words, the retention setting is on the memory module and is transferred with the circuit diagram when uploading or downloading from the PC.

Changing the operating mode or the circuit diagram

When the operating mode is changed or the CL circuit diagram is modified, the retentive data is normally saved together with their actual values. The actual values of relays no longer being used are also retained.

Changing the operating mode

If you change from RUN to STOP and then back to RUN, the actual values of the retentive data will be retained.

Changing the CL circuit diagram

The actual values are retained if the CL circuit diagram is modified.

Attention!

Even if the markers and function relays that were selected as retentive are deleted from the circuit diagram, the retentive actual values are retained when switching from STOP to RUN or when switching the power supply off and on again. If these relays are used in the circuit diagram again, they will be assigned with the previous actual values.

Changing the startup behaviour in the SYSTEM menu

The retentive actual values in the logic relay are retained, irrespective of the RUN MODE or STOP MODE setting.

Displaying device information

The device information is provided for service tasks or in order to determine the performance level of the device.

This function is only available with devices featuring a display.

Exception: Terminal mode with the display system.
The logic relay allows you to show the following device information:

- Power supply AC1, AC2 or DC1, DC2,
- T (transistor output) or R (relay output)
- C (clock provided)
- LCD (display provided)
- OS: 1.10.204 (operating system version)
- CRC: 25825 (Checksum of the operating system is only displayed in STOP mode).
- Program name if this was assigned with CL- SOFT.
- Switch to the main menu.

The device information is always available. The password does not prevent access.

- Select the main menu.

FROEFHA. . . ETOF $/ \mathrm{FLN}$ FAFHNETEF . .
 SET LLINR.

```
OMTMLEM
05: 1.0|.0]"
W%: 21714
```


- Select the INFO.. menu with the cursor button \vee.
- Press the OK button.

This will display all device information.
Press ESC to exit the display.

6 Inside the logic relay

Logic relay circuit diagram cycle

In conventional control systems, a relay or contactor control processes all the rungs in parallel. The speed with which a contactor switches in this case depends on the components used, and ranges from 15 to 40 ms for relay pick-up and drop-out.

With the circuit diagram the logic relay is processed with a microprocessor that simulates the contacts and relays of the circuit concerned and thus processes all switching operations considerably faster. Depending on its size, the CL circuit diagram is processed cyclically every 2 to 40 ms .

During this time, the logic relay passes through five segments in succession.

How the logic relay evaluates the circuit diagram:

Rungs Segment

1
2
3
4

$$
11-1-1-1-00
$$

In the first three segments the logic relay evaluates the contact fields in succession. The logic relay checks whether contacts are switched in parallel or in series and saves the switching states of all contact fields.

In the fourth segment, the logic relay assigns the new switching states to all the coils in one pass.

The fifth segment is outside of the circuit diagram. The logic relay uses this to contact the "outside world": output relays Q1 to Q... are switched and inputs I1 to "I..." are re-read. The logic relay also copies all new switch states to the status image.

The logic relay only uses this status image for one cycle. This ensures that each rung is evaluated with the same switching states for one cycle, even if the input signals at I1 to I12, for example, change their status several times within a cycle.

Evaluation in the circuit diagram and high-speed counter functions

When using high-speed counter functions, the signal state is continuously counted or measured irrespective of the processing of the circuit diagram. (C13, C14 high-speed up/down counters, C15, C16 frequency counters)

CL operation and implications for circuit diagram creation

The logic relay evaluates the circuit diagram in these five segments in succession. You should therefore remember two points when you create your circuit diagrams:

- The changeover of a relay coil does not change the switching state of an associated contact until the next cycle starts.
- Always wire forwards, upwards or downwards. Never wire backwards.

Example: switching in the next cycle

Start condition:

- I1, I2 switched on
- Q1 switched off.

This is the circuit diagram of a self-latching circuit. If 11 and 12 are closed, the switching state of relay coil Kl is latched via contact Q1.

- 1st cycle: Inputs I1 and I2 are switched on. Coil FW 1 picks up.
- Contact Q1 remains switched off since the logic relay evaluates from left to right.
- 2nd cycle: The self-latching now becomes active. The logic relay has transferred the coil states at the end of the first cycle to contact Q1.

Example: Do not wire backwards

This example is shown in section "Creating and modifying connections". It was used there to illustrate how NOT to do it.

In the third circuit connection, the logic relay finds a connection to the second circuit connection in which the first contact field is empty. The output relay is not switched.
When wiring more than three contacts in series, use one of the marker relays.

Delay times for inputs and outputs

The time from reading the inputs and outputs to switching contacts in the circuit diagram can be set in the logic relay via the delay time.

This function is useful, for example, in order to ensure a clean switching signal despite contact bounce.

Figure 81: CL input assigned with a switch
CL-DC1, CL-DC2, CL-AC1 and CL-AC2 function with different input voltages and therefore also have different evaluation methods and delay times.

Delay times with CL-DC1 and CL-DC2 basic units

The delay time for DC signals is 20 ms .

Figure 82: Delay times of CL-DC1 and CL-DC2 basic units

An input signal S 1 must therefore be 15 V or 8 V (CL-DC1) for at least 20 ms on the input terminal before the switching contact will change from 0 to 1 (range A). If applicable, this time must also include the cycle time (range B) since the logic relay does not detect the signal until the start of a cycle.

The same time delay (range C) applies when the signal drops out from 1 to 0 .

If the debounce is switched off, the logic relay responds to an input signal after just 0.25 ms .

Figure 83: Switching behaviour with input debounce disabled
Typical delay times with the debounce delay switched off are:

- On-delay for I1 to I12:
- 0.25 ms (CL-DC2),
- 0.3 ms (CL-DC1)
- Off-delay for
- 11 to I 6 and 19 to $\mathrm{I} 12: 0.4 \mathrm{~ms}$ (CL-DC2), 0.3 ms (CL-DC1)
- 17 and I8: 0.2 ms (CL-DC2), 0.35 ms (CL-DC1)

Ensure that input signals are noise-free if the input debounce is disabled. The logic relay will even react to very short signals.

Delay time with CL-AC1 and CL-AC2 basic units

The input delay with AC voltage signals depends on the frequency. The appropriate values for 60 Hz are given in brackets.

- On-delay
-80 ms at 50 Hz ,
-66 ms at 60 Hz
- Off-delay for
- I1 to I6 and I9 to I12: 80 ms (66 ms)
- 17 and $\mathrm{I8}: 160 \mathrm{~ms}(150 \mathrm{~ms})$ with CL-AC1
- I7 and I8: $80 \mathrm{~ms}(66 \mathrm{~ms})$ with CL-AC2

Figure 84: On-delay, CL-AC1 and CL-AC2
If the debounce delay is switched on, the logic relay checks at $40 \mathrm{~ms}(33 \mathrm{~ms})$ intervals whether there is a half-wave present at an input terminal (1st and 2nd pulses in A). If the logic relay detects two pulses in succession, the device switches on the corresponding input internally.

If this is not the case, the input is switched off again as soon as the logic relay does not detect two successive half-waves (1st and 2nd pulses in B).

Figure 85: Pushbutton with bounce

If a button or switch bounces (A), the delay time may be extended by 40 ms (33 ms) (A).

If the debounce delay is switched off, the delay time is reduced.

- On-delay 20 ms (16.6 ms)
- Off-delay for

11 to I6 and I9 to I12: $20 \mathrm{~ms}(16.6 \mathrm{~ms})$

- Off-delay for

I7 and I8: 100 ms (100 ms) with CL-AC1, CL-AC2

Figure 86: On- and Off-delays
The logic relay switches the contact as soon as it detects a pulse (A). If no pulse is detected, the logic relay switches off the contact (B).

The procedure for changing the delay times is described in section "Activating input delay (debounce)" on Page 214.

Delay times for the analog inputs CL-AC1, CL-DC1 and CL-DC2

The analog input values are read at 1 ms intervals. The values are continuously smoothed so that the analog values do not fluctuate excessively and remain clean. At the start of the circuit diagram cycle, the currently available analog values that have been smoothed are provided for processing in the circuit diagram.

Monitoring of short-circuit/ overload with CL-LST, CL-LMT and CL-LET

Expanding CL-LMR/CL-LMT CL-LMR/CL-LMT can be expanded locally using the CL-LER.18AC2, CL-LER.18DC2, CL-LER. 20 or CL-LET.20DC2 expansion modules, or remotely via the CL-LEC.CIOOO coupler unit.
 Install the units and connect the inputs and outputs as described (\rightarrow chapter "Installation", Page 27).
 You process the inputs of the expansion devices as contacts in the CL circuit diagram in the same way as you process the inputs of the basic unit. The input contacts are assigned the operand identifiers R1 to R12.
 R15 and R16 are the group fault alarms of the transistor expansion unit $(\rightarrow$ section "Monitoring of short-circuit/ overload with CL-LST, CL-LMT and CL-LET", Page 234).
 The outputs are processed as relay coils or contacts like the outputs in the basic unit. The output relays are S1 to S8.

CL-LER.18AC2 and CL-LER.18DC2 are provided with the outputs S1 to S6. The other outputs S7, S8 can be used as markers.

How is an expansion unit recognised?

The logic relay checks cyclically whether a device is sending data on CL-LINK.

Transfer behaviour

The input and output data of the expansion units is transferred serially in both directions. Take into account the modified reaction times of the inputs and outputs of the expansion units:

Input and output reaction times of expansion units The debounce setting has no effect on the expansion unit.

Transfer times for input and output signals:

- Central expansion

Time for inputs R1 to R12:
$30 \mathrm{~ms}+1$ cycle time

- Time for outputs S1 to S6 (S8):
$15 \mathrm{~ms}+1$ cycle
- Remote expansion

Time for inputs R1 to R12:
$80 \mathrm{~ms}+1$ cycle time

- Time for outputs S1 to S6 (S8):
$40 \mathrm{~ms}+1$ cycle

Function monitoring of expansion units

If the power supply of the expansion unit is not present, no connection can be established between it and basic unit. The expansion inputs R1 to R12, R15, R16 are incorrectly processed in the basic unit and show status 0 . It cannot be assured that the outputs S1 to S 8 are transferred to the expansion unit.

Warning!

Ensure the continuous monitoring of CL expansion devices in order to prevent switching faults in machines or systems.

The status of the internal input 114 of the basic unit indicates the status of the expansion unit:

- $114=$ " 0 ": expansion unit is functional
- 114 = " 1 ": expansion unit is not functional faster, the internal monitoring input 114 will have status 1 , indicating that an expansion device is not functional.

Example

:

The expansion unit may be powered up later than the basic unit. This means that the basic unit is switched to RUN when an expansion unit is missing. The following CL circuit diagram detects if the expansion unit is functional or not functional.

As long as $I 14$ is 1 , the remaining circuit diagram is skipped. If I14 is 0 , the circuit diagram is processed. If the expansion unit drops out for any reason, the circuit diagram is skipped. M1 detects whether the circuit diagram was processed for at least one cycle after the power supply is switched on. If the circuit diagram is skipped, all the outputs retain their previous state. The next example should be used if this is not desired.

Example with LCD output and reset of the outputs

Saving and loading circuit diagrams

You can either use the logic relay interface to save circuit diagrams to a memory module or use CL-SOFT and a transmission cable to transfer them to a PC.

CL-LSR..X.../CL-LST..X..., CL-LMR..X.../CL-LMT..X...

CL models without a keypad can be loaded with a CL circuit diagram via CL-SOFT or automatically from the fitted memory module every time the power supply is switched on.

Interface

The logic relay interface is covered.

DANGER of electric shock with CL-AC units!

If the voltage terminals for phase (L) and neutral conductor (N) are reversed, the connected $230 \mathrm{~V} / 115 \mathrm{~V}$ voltage will be present at the CL interface. There is a danger of electric shock if the plug is not properly connected or if conductive objects are inserted into the socket.

Figure 87: Do not touch the interface

- Carefully remove the cover with a screwdriver.

Figure 88: Remove the cover
To close the slot again, push the cover back onto the slot.

The module is available as an accessory CL-LAS.MD003 for CL-LSR/CL-LST and CL-LMR/CL-LMT.

Compatibility of memory modules MD001 and MD002

Circuit diagrams with all the data can transferred to the CL-LSR/CL-LST and CL-LMR/CL-LMT from the MD001 and MD002 memory module. A transfer, however, in the other direction is not possible.

Each memory module saves one CL circuit diagram.
Information stored on the memory module is "non-volatile" and thus you can use the module to archive, transfer and copy circuit diagrams.

The memory module can be used for saving

- the circuit diagram
- all parameter sets of the function relays
- all display texts with functions
- the system settings,
- Input delay
- P buttons
- Password
- Retention on/off,
- card start
- summer time start/end time settings
- The memory module is fitted in the opened interface provided for it.

CL-LSR/CL-LST (CL-LAS.MD003): CL-LMR/CL-LMT (CL-LAS.MD003):

Figure 89: Insert memory module

$$
\rightarrow \quad \begin{aligned}
& \text { With the logic relay you can insert and remove the memory } \\
& \text { module even if the power feed is switched on, without the } \\
& \text { risk of losing data. }
\end{aligned}
$$

Loading or saving circuit diagrams

You can only transfer circuit diagrams in STOP mode.
Behaviour of CL device without integrated keypad, display when loading the memory module The CL modules without a keypad and LCD display transfer the circuit diagram from the inserted memory module to CL-LSR..X.../CL-LST..X... or CL-LMR...X.../CL-LMT..X.. when the power supply is switched on. The circuit diagram in the logic relay is retained if the circuit diagram on the memory module is invalid.

Behaviour of CL device with integrated keypad, display when memory module is inserted

 If the logic relay does not contain a circuit diagram, the circuit diagram is loaded from the memory module automatically when the logic relay is switched on.The memory module is detected when the module is inserted and you move from the main menu to the program menu.

As read access to MD001, MD002 and CL-LAS.MD003 modules are possible, the module can only be removed in the status display. This ensures that the correct module is always detected.

Only the CL-LAS.MD003 memory module can be written to.

- Switch to STOP mode.

- Select PROGRAM... from the main menu.
- Select the CARD... menu option.

The CARD... menu option will only appear if you have inserted a functional memory module.

CEVTE-MFF TFFOMEUTE

You can transfer a circuit diagram from the logic relay to the DELETE TAFD

\rightarrow

If the operating voltage fails during communication with the module, repeat the last step since the logic relay may not have transferred or deleted all the data.

After transmission, remove the memory module and close the cover.

Saving a circuit diagram to the memory module - Select CARD-DEVICE.

- Confirm the prompt with OK to delete the contents of the memory module and replace it with the CL circuit diagram.

Press ESC to cancel.

Loading a circuit diagram from the memory module

DEVIEE－MFPD WF゙ローMEVTE DELETE EAFD
－Select the CARD \rightarrow DEVICE menu option．
－Press OK to confirm the prompt if you want to delete the CL memory and replace it with the module content．

Press ESC to go back one menu．

Attention！

Once you have started the CARD \rightarrow DEVICE transfer，the following operation is initiated：
－The RAM of the device is loaded from the module．
－The internal program memory is cleared．
－The data is written from the module to the internal retentive program memory．

This is carried out in blocks．A complete program is not transferred to the RAM for space reasons．

If an invalid program or an interruption occurs during the read or write operation，CL－LSR／CL－LST or CL－LMR／CL－LMT loses the program in the internal memory．

Deleting a circuit diagram on the memory module －Select the DELETE CARD menu option．
－Press OK to confirm the prompt and to delete the module content．

Press ESC to cancel．

CL-SOFT CL-SOFT is a PC program with which you can create, store, test and manage CL circuit diagrams.
\longrightarrow
You should only transfer data between the PC and the logic relay using the special CL-PC connecting cable, which is available as an optional accessory CL-LAS.TK001.

DANGER of electric shock with CL-AC units!
Safe isolation of the interface voltage is only ensured by using the cable CL-LAS.TK001.

Figure 90: Inserting CL-LAS.TK001 ©

- Connect the PC cable to the serial PC interface.
- Insert the CL plug in the opened interface.
- Activate the status display on the logic relay.

The logic relay cannot exchange data with the PC while the circuit diagram display is on screen.

Use CL-SOFT to transfer circuit diagrams from your PC to the logic relay and vice versa. Switch the logic relay to RUN mode from the PC to test the program using the current wiring.

CL-SOFT provides extensive help on how to use the software.

- Start CL-SOFT and click on Help.

The help provides all the additional information about CL-SOFT that you will need.

IWWHLID FFOE

If there are transmission problems, the logic relay will display the INVALID PROG message.

Check whether the circuit diagram is suitable for the destination device.

If the operating voltage fails during communication with the PC, repeat the last step. It is possible that not all the data was transferred between the PC and the logic relay.

Figure 91: Pull CL-LAS.TK001 (1)
After transmission, remove the cable and close the cover.

Logic relay with separate display module

CL-LSR/CL-LST and CL-LMR/CL-LMT can be operated with a separate display module. In this configuration, all the display information is transferred via the CL interface.

This has the advantage that the logic relay can be operated remotely. The texts in the logic relay are backlit and displayed on the front of the operator or control panel in twice the size. The display module has the high degree of protection IP65.

When using a display module with a keypad, the logic relay can be programmed and assigned parameters "from outside".

Card mode operation is not possible when using a standalone display module. The interface can only be used once.

The display modules CL-LDD.XK (IP65) and CL-LDD.K (IP65) with the CL-LDC.S... remote display connection modules are currently available for use as stand-alone display modules.

\rightarrow

The remote display connection module CL-LDC.S... communicates continuously with the logic relay. This increases the cycle time of the logic relay and must be taken into account during engineering.

Device version

Every logic relay has the device version number printed on the left of the device housing. The device version is indicated by the first two digits of the device number.
DC 20,4 $\ldots 28,8 \mathrm{~V}$
3 W
$01-900000042$

Figure 92: Example of device version
This device is of device version 01.
The device version provides useful service information about the hardware version and the version of the operating system. The device version is important for selecting the correct logic relay for CL-SOFT.

7 What happens if ...?

You may sometimes find that the logic relay does not do exactly what you expect. If this happens, read through the following notes which are intended to help you solve some of the problems you may encounter.

You can use the power flow display in the logic relay to check the logic operations in the CL circuit diagram with reference to the switching states of contacts and relays.

Only qualified persons should test the logic relay voltages while the device is in operation.

Messages from the

CL system

Messages from the CL system on the LCD display	Explanation	Remedy
No display	Power supply interrupted	Switch on the power supply
	LCD is faulty	Replace logic relay
Continuous display		
TEST: AC	Self-test aborted	Replace logic relay
TEST: EEPROM		
TEST: DISPLAY		
TEST: CLOCK		
ERROR: I2C	Memory module removed or not inserted correctly before saving	Insert memory module
	Memory module is faulty	Change memory module
	Logic relay is faulty	Replace logic relay
ERROR: EEPROM	The memory for storing the retentive values or the CL circuit diagram memory is faulty.	Replace logic relay
ERROR: CLOCK	Clock error	Replace logic relay

Messages from the CL system on the LCD display	Explanation	Remedy
ERROR: LCD	LCD is faulty	Replace logic relay
ERROR: ACLOW	Incorrect AC voltage	Test the voltage
	Logic relay is faulty	Replace logic relay

Possible situations when creating circuit diagrams

Possible situations when creating circuit diagrams	Explanation	Remedy
Cannot enter contact or relay in circuit diagram	Logic relay is in RUN mode	Select STOP mode
Time switch switches at wrong times	Time or time switch parameters not correct	Check time and parameters
Message when using a memory module PROG INVALID	CL memory module without circuit diagram	Change CL type or change the circuit diagram in the memory module
	Circuit diagram on the memory module uses contacts/relays that the logic relay does not recognise	
Power flow display does not show changes to the rungs	Logic relay is in STOP mode	Select RUN mode
	Association/connection not fulfilled	Check and modify circuit diagram and parameter sets
	Relay does not activate coil	
	Incorrect parameter values/time	
	- Analog value comparison is incorrect - Time value of timing relay is incorrect - Function of timing relay is incorrect	
Relay Q or M does not energize	Relay coil has been wired up several times	Check coil field entries

Possible situations when creating circuit diagrams	Explanation	Remedy
Input not detected	Loose terminal contact	Check installation instructions, check external wiring
	No voltage to switch/button	
	Wire breakage	
	CL input is faulty	Replace logic relay
Relay output Q does not switch and activate the load	Logic relay in STOP mode	Select RUN mode
	No voltage at relay contact	Check installation instructions, check external wiring
	Logic relay power supply interrupted	
	CL circuit diagram does not activate relay output	
	Wire breakage	
	CL relay is faulty	Replace logic relay

Event

Event	Explanation	Remedy
The actual values are not being stored retentively.	Retention has not been switched on.	Switch on retention in the SYSTEM menu.
The RETENTION... menu is not displayed in the SYSTEM menu.	Logic relay is in RUN mode	Select STOP mode
The SYSTEM menu is not displayed.	This CL model does not have this menu.	Exchange logic relay if you need retention
Logic relay starts in STOP mode only	No circuit diagram in logic relay	Load, input circuit diagram
	Startup behaviour is set to the function "Startup in operating mode STOP".	Set the startup behaviour in the SYSTEM menu.
LCD display showing nothing.	No power supply	Switch on the power supply
	Logic relay is faulty	Press the OK button. If no menu appears, replace the logic relay.
	Text displayed with too many spaces	Enter text or do not select
GW flashes on the status display	CL-LEC.CIO00 coupler unit detected without I/O expansion.	Connect I/O expansion to external CL-LINK

Appendix

Dimensions

Figure 93: Dimensions CL-LEC.CIO00 and CL-LER. 20 in mm (specifications in inches see table 34, page 253)

Figure 94: Dimensions CL-LSR/CL-LST in mm
(specifications in inches see table 34, page 253)

Figure 95: Dimensions CL-LMR/CL-LMT in mm
(specifications in inches see table 34)

Table 34: Dimensions in inches

mm	inches	mm	inches
4.5	0.177	56.5	2.22
7.5	0.295	58	2.28
10.75	4.23	71.5	2.81
16.25	0.64	75	2.95
35.5	1.4	90	3.54
35.75	1.41	102	4.01
45	1.77	107.5	4.23
47.5	1.87	110	4.33
50	1.97		

Technical data	GeneralCL...		
	$\begin{aligned} & \hline \text { CL-LEC.CIO00 } \\ & \text { CL-LER. } 20 \end{aligned}$	$\begin{aligned} & \hline \text { CL-LSR, } \\ & \text { CL-LST, } \end{aligned}$	$\begin{aligned} & \hline \text { CL-LMR, } \\ & \text { CL-LMT } \end{aligned}$
Dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$			
[mm]	$35.5 \times 90 \times 56.5$	$71.5 \times 90 \times 56.5$	$107.5 \times 90 \times 56.5$
[inches]	$1.4 \times 3.54 \times 2.08$	$2.81 \times 3.54 \times 2.08$	$4.23 \times 3.54 \times 2.08$
Space units (SU) width	2 SU (space units) wide	4 SU (space units) wide	6 SU (space units) wide
Weight			
[g]	70	200	300
[lb]	0.154	0.441	0.661
Mounting	Top-hat rail DIN $50022,35 \mathrm{~mm}$ or screw mounting with 3 CL-LAS.FD001 fixing brackets (accessories); only 2 fixing brackets required for CL-LEC.CIOOO and CL-LER. 20.		

Climatic environmental conditions
(Cold to IEC 60068-2-1, Heat to IEC 60068-2-2)

Ambient temperature during operation Installed horizontally/vertically	-25 to $55^{\circ} \mathrm{C},-13$ to $131{ }^{\circ} \mathrm{F}$
Condensation	Prevent condensation with suitable measures
LCD display (reliably legible)	0 to $55^{\circ} \mathrm{C}$, 32 to $131{ }^{\circ} \mathrm{F}$
Storage/transport temperature	-40 to $+70^{\circ} \mathrm{C},-40$ to $158{ }^{\circ} \mathrm{F}$
Relative humidity (IEC 60068-2-30)	5 to 95%, non-condensing
Air pressure (operation)	795 to 1080 hPa
Corrosion resistance	
IEC 60068-2-42	$\mathrm{SO}_{2} 10 \mathrm{~cm}^{3} / \mathrm{m}^{3}, 4$ days
IEC 60068-2-43	$\mathrm{H}_{2} \mathrm{~S} 1 \mathrm{~cm}^{3} / \mathrm{m}^{3}, 4$ days
Inflammability class to UL 94	V 0

Ambient mechanical conditions

| Pollution degree | | 2 |
| :--- | :--- | :--- | :--- |
| | | |
| Degree of protection (EN 50178, IEC 60529, VBG4) | | IP 20 |

Oscillations (IEC 60068-2-6)	10 to 57 Hz (constant amplitude 0.15 mm)
	57 to 150 Hz (constant acceleration 2 g)
Shock (IEC 60068-2-27)	18 shocks (semi-sinusoidal $15 \mathrm{~g} / 11 \mathrm{~ms}$)
Drop (IEC 60068-2-31)	Drop height 50 mm
Free fall, when packed (IEC 60068-2-32)	1 m
Electromagnetic compatibility (EMC)	
Electrostatic discharge (ESD), (IEC/EN 61 000-4-2, severity level 3)	8 kV air discharge, 6 kV contact discharge
Electromagnetic fields (RFI), (IEC/EN 61000-4-3)	Field strength $10 \mathrm{~V} / \mathrm{m}$
Emitted interference Interference immunity (EN 55011, EN 55022) IEC 61000-6-1,2,3,4	Class B
Fast transient burst (IEC/EN 61000-4-4, severity level 3)	2 kV power cables, 2 kV signal cables
High-energy pulses (surge) CL-AC (IEC/EN 61000-4-5)	2 kV power cable symmetrical
High-energy pulses (surge) CL-DC1, CL-DC2, CL-AC1 (IEC/EN 61000-4-5, severity level 2)	0.5 kV power cable symmetrical
Immunity to line-conducted interference to (IEC/EN 61000-4-6)	10 V
Insulation resistance	
Clearance and creepage distances	EN 50178, UL 508, CSA C22.2, No 142
Insulation resistance	EN 50178
Overvoltage category/degree of pollution	11/2
Tools and cable cross-sections	
solid core	min. 0.2 mm 2 , max. $4 \mathrm{~mm} 2 / \mathrm{AWG}: 22-12$
Flexible with ferrule	$\min .0 .2 \mathrm{~mm}^{2}$, max. $2.5 \mathrm{~mm}^{2 /}$ AWG: $22-12$ Factory wiring: to AWG 30
Slot-head screwdriver, width	$3.5 \times 0.8 \mathrm{~mm}$
Tightening torque	0.6 Nm

Backup/accuracy of real-time clock

(only with CL-LSR..X.../CL-LST..X..., CL-LMR..X.../CL-LMT..X...)
Clock battery back-up

(1) = backup time in hours
(2) $=$ service life in years

Accuracy of the real-time clock

$$
\text { Normally } \pm 5 \text { s/day, } \sim \pm 0,5 \mathrm{~h} / \text { year }
$$

Repetition accuracy of timing relays

Accuracy of timing relays
Resolution
Range "s"
Range "M:S"
Range "H:M"

$\pm 1 \%$ of value
10 ms
1 s
1 min.
1000000
128

Special approvals

CSA
Hazardous Locations CLASS I Division 2 Groups A, B, C and D Temperature Code T3C $-160^{\circ} \mathrm{C}$ in $55^{\circ} \mathrm{C}$ ambient.

Power supply

CL-LSR...AC1, CL-LMR...AC1, CL-LSR...AC2, CL-LMR...AC2

	$\begin{aligned} & \text { CL-LSR...AC1, } \\ & \text { CL-LMR...AC1 } \end{aligned}$	$\begin{aligned} & \text { CL-LSR...AC2, } \\ & \text { CL-LMR...AC2 } \end{aligned}$
Rated value (sinusoidal)	24 V AC	100/110/115/120/230/240 V AC
Operating range	$\begin{aligned} & +10 /-15 \% \\ & 20.4 \text { to } 26.4 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & +10 /-15 \% \\ & 85 \text { to } 264 \text { V AC } \end{aligned}$
Frequency, rated value, tolerance	$50 / 60 \mathrm{~Hz}, \pm 5 \%$	$50 / 60 \mathrm{~Hz}, \pm 5 \%$
Input current consumption	CL-LSR...AC1 CL-LMR...AC1	CL-LSR...AC2 CL-LMR...AC2
at $115 / 120 \mathrm{~V} \mathrm{AC} 60 \mathrm{~Hz}$		Normally 40 mA Normally 70 mA
at 230/240 V AC 50 Hz		Normally 20 mA Normally 35 mA
at $24 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$	Normally 200 mA Normally 300 mA	
Voltage dips	20 ms , IEC/EN 61131-2	20 ms , IEC/EN 61131-2
Power loss	CL-LSR...AC1 CL-LMR...AC1	CL-LSR...AC2 CL-LMR...AC2
at 115/120 V AC		Normally 5 VA Normally 10 VA
at 230/240 V AC		Normally 5 VA Normally 10 VA
at 24 V AC	Normally 5 VA Normally 7 VA	

CL-LSR...DC1, CL-LMR...DC1, CL-LS...DC2, CL-LM...DC2

	$\begin{aligned} & \text { CL-LSR...DC1, } \\ & \text { CL-LMR...DC1 } \end{aligned}$	$\begin{aligned} & \hline \text { CL-LSR...DC2, } \\ & \text { CL-ST...DC2, } \\ & \text { CL-LMR...DC2, } \\ & \text { CL-LMT...-DC2 } \end{aligned}$
Rated voltage		
Nominal value	$\begin{aligned} & 12 \text { V DC, } \\ & +30 \%,-15 \% \end{aligned}$	24 V DC, +20 \%, -15 \%
Permissible range	10.2 to 15.6 V DC	20.4 to 28.8 V DC
Residual ripple	§ 5 \%	$\leqq 5 \%$
Input current at rated voltage	CL-LSR...DC1 CL-LMR...DC1	CL-LS...DC2 CL-LM...DC2
	Normally 140 mA Normally 200 mA	Normally 80 mA Normally 140 mA
Voltage dips	10 ms , IEC/EN 61 131-2	10 ms , IEC/EN 61 131-2
Power loss	CL-LS...DC1 CL-LM...DC1	CL-LS...DC2 CL-LM...DC2
	Normally $2 \mathrm{~W} \quad$ Normally 3.5 W	Normally $2 \mathrm{~W} \quad$ Normally 3.5 W

Inputs
CL- LSR...AC1, CL-LMR...AC1

CL- LSR...AC1
 CL-LMR...AC1

Digital inputs 24 V AC

Quantity	8	12
Status display	LCD (if provided)	LCD (if provided)
	2 inputs (17,18) usable as analog inputs	4 inputs (17, I8, I11, I12) usable as analog inputs
Potential isolation		
To power supply	No	No
Between each other	No	No
To the outputs	Yes	Yes

	CL- LSR...AC1	CL-LMR...AC1
Rated voltage L (sinusoidal)	24 V AC	24 V AC
At state "0"	0 to 6 V AC	0 to 6 V AC
At state "1"	$\begin{aligned} & \text { (17, I8) } \\ & >8 \mathrm{VAC}>11 \mathrm{VDC} \\ & (11 \text { to } \mathrm{IG}, 19 \text { to } 112) 14 \text { to } \\ & 26.4 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & (I 7, I 8, I 11, I 12) \\ & >8 \mathrm{~V} \mathrm{AC},>11 \mathrm{VDC} \\ & (11 \text { to } \mathrm{I}, \mathrm{I}, \mathrm{I}, 10) 14 \text { to } \\ & 26.4 \mathrm{~V} \mathrm{AC} \end{aligned}$
Rated frequency	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$
Input current for state "1" I1 to I6 (CL-LMR also I9 to I10)	4 mA at 24 V AC 50 Hz	4 mA at 24 V AC 50 Hz
Input current for state "1" 17, 18 (CL-LMR also I11, I12)	$\begin{aligned} & 2 \mathrm{~mA} \text { at } 24 \mathrm{~V} \mathrm{AC} 50 \mathrm{~Hz} \text {, } \\ & 2 \mathrm{~mA} \text { at } 24 \mathrm{~V} \mathrm{DC} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~mA} \text { at } 24 \mathrm{~V} \mathrm{AC} 50 \mathrm{~Hz}, \\ & 2 \mathrm{~mA} \text { at } 24 \mathrm{~V} \mathrm{DC} \end{aligned}$
Delay time for 0 to 1 and 1 to 0 for 11 to I8, CL-LMR also 19 to I12		
Debounce ON	$80 \mathrm{~ms}(50 \mathrm{~Hz}), 66^{2 / 3} \mathrm{~ms}(60 \mathrm{~Hz})$	$80 \mathrm{~ms}(50 \mathrm{~Hz}), 662 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$
Debounce OFF	$20 \mathrm{~ms}(50 \mathrm{~Hz}), 162 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$	$20 \mathrm{~ms}(50 \mathrm{~Hz}), 162 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$
Max. permissible cable length (per input)		
11 to I8 (CL-LMR also I9 to I10)	Normally 40 m	Normally 40 m
CL-LSR...AC2, CL-LER.18AC2, CL-LMR...AC2		
	CL-LSR...AC2	CL-LER.18AC2, CL-LMR...AC2
Digital inputs 115/230 V AC		
Quantity	8	12
Status display	LCD (if provided)	LCD (if provided)
Potential isolation		
To power supply	No	No
Between each other	No	No
To the outputs	Yes	Yes
Rated voltage L (sinusoidal)		
At signal "0"	0 to 40 V AC	0 to 40 V AC
At signal "1"	79 to 264 V AC	79 to 264 V AC
Rated frequency	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$

	CL-LSR...AC2	$\begin{aligned} & \text { CL-LER.18AC2, } \\ & \text { CL-LMR...AC2 } \end{aligned}$
Input current for state „1" R1 to R12, 11 to I6 (CL-LMR also 19 to I12)	$6 \times 0.5 \mathrm{~mA}$ at 230 VAC 50 Hz $6 \times 0.25 \mathrm{~mA}$ at 115 V AC 60 Hz	$\begin{aligned} & 10(12) \times 0.5 \mathrm{~mA} \text { at } \\ & 230 \mathrm{VAC} 50 \mathrm{~Hz} \\ & 10(12) \times 0.25 \mathrm{~mA} \text { at } \\ & 115 \mathrm{~V} \mathrm{AC} 60 \mathrm{~Hz} \end{aligned}$
Input current for state " 1 " 17, 18	$\begin{aligned} & 2 \times 6 \mathrm{~mA} \text { at } 230 \mathrm{VAC} 50 \mathrm{~Hz}, \\ & 2 \times 4 \mathrm{~mA} \text { at } 115 \mathrm{~V} \mathrm{AC} 60 \mathrm{~Hz} \end{aligned}$	$2 \times 6 \mathrm{~mA}$ at 230 VAC 50 Hz , $2 \times 4 \mathrm{~mA}$ at 115 V AC 60 Hz
Delay time for 0 to 1 and 1 to 0 for I1 to I6, 19 to I12		
Debounce ON	$80 \mathrm{~ms}(50 \mathrm{~Hz}), 662 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$	$80 \mathrm{~ms}(50 \mathrm{~Hz}), 662 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$
Debounce OFF (also R1 to R12)	$20 \mathrm{~ms}(50 \mathrm{~Hz}), 162 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$	$20 \mathrm{~ms}(50 \mathrm{~Hz}), 162 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$
Delay time I7, 18 for 1 to 0		
Debounce ON	$160 \mathrm{~ms}(50 \mathrm{~Hz}), 150 \mathrm{~ms}(60 \mathrm{~Hz})$	$80 \mathrm{~ms}(50 \mathrm{~Hz}), 66^{2 / 3} \mathrm{~ms}(60 \mathrm{~Hz})$
Debounce OFF	$100 \mathrm{~ms}(50 \mathrm{~Hz} / 60 \mathrm{~Hz}$)	$20 \mathrm{~ms}(50 \mathrm{~Hz}), 162 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$
Delay time I7, I8 for 0 to 1		
Debounce ON	$80 \mathrm{~ms}(50 \mathrm{~Hz}), 662 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$	$80 \mathrm{~ms}(50 \mathrm{~Hz}), 662 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$
Debounce OFF	$20 \mathrm{~ms}(50 \mathrm{~Hz}), 162 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$	$20 \mathrm{~ms}(50 \mathrm{~Hz}), 162 / 3 \mathrm{~ms}(60 \mathrm{~Hz})$
Max. permissible cable length (per input)		
I1 to I6, R1 to R12 (CL-LMR also 19 to I12)	Normally 40 m	Normally 40 m
17, 18	Normally 100 m	Normally 100 m

CL-LSR...DC1, CL-LMR...DC1

	CL-LSR...DC1	CL-LMR...DC1
Digital inputs		
Quantity	8	12
Inputs usable as analog inputs	17, 18	17, 18, 111, 112
Status display	LCD (if provided)	LCD (if provided)
Potential isolation		
To power supply	No	No
Between each other	No	No
To the outputs	Yes	Yes
Rated voltage		
Nominal value	12 V DC	12 V DC
At state "0"	4 V DC (11 to 18)	4 V DC (11 to I12)
At state "1"	8 V DC (11 to 18)	8 V DC (11 to I12)
Input current for state "1"	3.3 mA at 12 V DC (11 to I6)	3.3 mA at 12 VDC (11 to I6, 19 to I12)
17, 18	1.1 mA at 12 V DC	1.1 mA at 12 V DC
Delay time for 0 to 1		
Debounce ON	20 ms	20 ms
Debounce OFF	Normally 0.3 ms (11 to I16) Normally 0.35 ms (17 , 18)	Normally 0.3 ms (11 to $16,19,110$) Normally 0.35 ms (17,18 , I11, I12)
Delay time from 1 to 0		
Debounce ON	20 ms	20 ms
Debounce OFF	Normally 0.3 ms (11 to I16) Normally 0.15 ms (17 , 18)	Normally 0.4 ms (11 to 16 , 19 to I12) Normally 0.2 ms ($17,18,111,112$)
Cable length (unscreened)	100 m	100 m

CL-LS...DC2,CL-LE...DC2, CL-LM...DC2

	$\begin{aligned} & \text { CL-LSR...DC2, } \\ & \text { CL-LST...DC2 } \end{aligned}$	$\begin{aligned} & \text { CL-LER...DC2, } \\ & \text { CL-LET...DC2 } \end{aligned}$	$\begin{aligned} & \text { CL-LMR...DC2, } \\ & \text { CL-LMT...DC2 } \end{aligned}$
Digital inputs			
Quantity	8	12	12
Inputs usable as analog inputs	17, 18		17, 18, 111, 112
Status display	LCD (if provided)		
Potential isolation			
To power supply	No	No	No
Between each other	No	No	No
To the outputs	Yes	Yes	Yes
Rated voltage			
Nominal value	24 V DC	24 V DC	24 V DC
At state "0"	$<5 \mathrm{~V}$ DC (11 to 18)	< 5 V DC (R1 to R12)	$<5 \mathrm{~V}$ DC (11 to l12)
At state "1"	$>8 \mathrm{~V}$ DC (17,18)		$\begin{aligned} & >8 \text { V DC } \\ & (17,18,111,112) \end{aligned}$
	$\begin{aligned} & >15 \mathrm{~V} D \\ & (11 \text { to } \mathrm{I} \text {) } \end{aligned}$	$\begin{aligned} & >15 \mathrm{~V} D C \\ & (\mathrm{R} 1 \text { to R12) } \end{aligned}$	$\begin{aligned} & >15 \text { V DC } \\ & \text { (I1 to I6, I9, I10) } \end{aligned}$
Input current for state "1"	3.3 mA at 24 V DC (I1 to I6)	3.3 mA at 24 V DC (R1 to R12)	3.3 mA at 24 V DC (I1 to I6, I9, I10)
$\begin{aligned} & \text { I7, I8 (CL-LM...DC2. } \\ & \text { also I11, I12) } \end{aligned}$	2.2 mA at 24 V DC		2.2 mA at 24 V DC
Delay time for 0 to 1			
Debounce ON	20 ms	20 ms	20 ms
Debounce OFF CL-LS...DC2 11 to 18 CL-LE...DC2 R1 to R12 CL-LM...DC2 I1 to I12	Normally 0.25 ms		

	$\begin{aligned} & \text { CL-LSR...DC2, } \\ & \text { CL-LST...DC2 } \end{aligned}$	$\begin{aligned} & \text { CL-LER...DC2, } \\ & \text { CL-LET...DC2 } \end{aligned}$	$\begin{aligned} & \text { CL-LMR...DC2, } \\ & \text { CL-LMT...DC2 } \end{aligned}$
Delay time from 1 to 0			
Debounce ON	20 ms	20 ms	20 ms
Debounce OFF	- Normally 0.4 ms (I1 to I6) - Normally 0.2 ms (17,18)	Normally 0.4 ms (R1 to R12)	- Normally 0.4 ms (11 to I6, I9, I10) - Normally 0.2 ms (17, 18, 111, I12)
Cable length (unshielded)	100 m	100 m	100 m

High-speed counter inputs, I1 to I4		CL-LSR...DC1, CL-LSR...DC2, CL-LST...DC2, CL-LMR...DC1, CL-LMR....DC2, CL-LMT...DC2
Number		4
Cable length (shielded)	m	20
High-speed up and down counter		
Counting frequency	kHz	< 1
Pulse shape		Square
Pulse pause ratio		1:1
Frequency counter		
Counting frequency	kHz	< 1
Pulse shape		Square
Pulse pause ratio		1:1

	$\begin{aligned} & \text { CL-LSR...AC1, } \\ & \text { CL-LSR...DC1, } \\ & \text { CL-LSR...DC2, } \\ & \text { CL-LST...DC2 } \end{aligned}$	$\begin{aligned} & \text { CL-LMR...AC1, } \\ & \text { CL-LMR...DC1, } \\ & \text { CL-LMR...DC2, } \\ & \text { CL-LMT...DC2 } \end{aligned}$
Analog inputs I7, I8, I11, I12		
Quantity	2	4
Potential isolation		
To power supply	No	No
From the digital inputs	No	No
To the outputs	Yes	Yes
Input type	DC voltage	DC voltage
Signal range	0 to 10 V DC	0 to 10 V DC
Resolution analog	10 mV	10 mV
Resolution digital	0.01 (10-bit, 1 to 1023)	0.01 (10-bit, 0 to 1023)
Input impedance	$11.2 \mathrm{k} \Omega$	$11.2 \mathrm{k} \Omega$
Accuracy		
Two CL devices	± 3 \% of actual value	$\pm 3 \%$ of actual value
Within a single device	$\pm 2 \%$ of actual value (17, 18), $\pm 0,12 \mathrm{~V}$	
Conversion time, analog/digital	Debounce ON: 20 ms Debounce OFF: every cycle	
Input current at 10 V DC	1 mA	1 mA
Cable length (shielded)	30 m	30 m

Relay outputs

CL-LSR, CL-LMR, CL-LER.18AC2, CL-LER.18DC2, CL-LER. 20

	CL-LSR	$\begin{aligned} & \hline \text { CL-LMR, } \\ & \text { CL-LER.18AC2, } \\ & \text { CL-LER.18DC2 } \end{aligned}$	CL-LER. 20
Quantity	4	6	2
Type of outputs	Relay		
In groups of	1	1	2
Parallel switching of outputs to increase performance	Not permissible		
Protection of an output relay	Miniature circuit-breaker B16 or 8 A fuse (slow)		
Potential isolation for mains current supply, inputs	Yes 300 V AC (safe isolation) 600 V AC (basic isolation)		
Mechanical lifespan (switching operations)	10×10^{6}		
Mains relays			
Conventional therm. current	$8 \mathrm{~A}(10 \mathrm{~A} \mathrm{UL})$		
Recommended for load	$>500 \mathrm{~mA}, 12 \mathrm{~V} \mathrm{AC/DC}$		
Short-circuit resistance $\cos \varphi=1$	16 A characteristic B (B16) at 600 A		
Short-circuit resistance $\cos \varphi=0.5 \text { to } 0.7$	16 A characteristic B (B16) at 900 A		
Rated impulse withstand voltage $U_{\text {imp }}$ contact coil	4 kV		
Rated insulation voltage Ui(t)			
Rated operational voltage Ue	250 V AC		
Safe isolation to EN 50178 between coil and contact	300 V AC		
Safe isolation to EN 50178 between two contacts	300 V AC		
Making capacity			
AC-15 250 V AC, 3 A (600 0ps/h)	300000 operations		
$\begin{aligned} & \text { DC-13 L/R } \leqq 150 \mathrm{~ms} 24 \mathrm{~V} \text { DC, } \\ & 1 \mathrm{~A}(500 \mathrm{Ops} / \mathrm{h}) \end{aligned}$	200000 operations		

	CL-LSR	$\begin{aligned} & \hline \text { CL-LMR, } \\ & \text { CL-LER.18AC2, } \\ & \text { CL-LER.18DC2 } \end{aligned}$	CL-LER. 20
Breaking capacity			
AC-15 $250 \mathrm{~V} \mathrm{AC}$,3 A (600 Ops/h)	300000 operations		
$\begin{aligned} & \text { DC-13 L/R } \leqq 150 \mathrm{~ms} 24 \mathrm{~V} \text { DC, } \\ & 1 \text { A (500 Ops/h) } \end{aligned}$	200000 operations		
Filament bulb load	1000 W at $230 / 240 \mathrm{~V} \mathrm{AC/25000}$ operations 500 W at $115 / 120 \mathrm{~V} \mathrm{AC/25000}$ operations		
Fluorescent tube with ballast	$10 \times 58 \mathrm{~W}$ at 230/240 V AC/25000 operations		
Conventional fluorescent tube, compensated	$1 \times 58 \mathrm{~W}$ at $230 / 240 \mathrm{~V} \mathrm{AC/25000}$ operations		
Fluorescent tube, uncompensated	$10 \times 58 \mathrm{~W}$ at $230 / 240 \mathrm{~V} \mathrm{AC/25000} \mathrm{operations}$		
Operating frequency, relays			
Mechanical switching operations	10 million (1×10^{7})		
Mechanical switching frequency	10 Hz		
Resistive lamp load	2 Hz		
Inductive load	0.5 Hz		

UL/CSA

Uninterrupted current at $240 \mathrm{~V} \mathrm{AC/24} \mathrm{~V} \mathrm{DC}$		10/8 A
AC	Control Circuit Rating Codes (Utilization category)	B300 Light Pilot Duty
	Max. rated operational voltage	300 V AC
	Max. uninterrupted thermal current $\cos \varphi=1$ at B 300	5 A
	Maximum make/break capacity $\cos \varphi \neq 1$ (Make/break) with B300	3600/360 VA
DC	Control Circuit Rating Codes (Utilization category)	R300 Light Pilot Duty
	Max. rated operational voltage	300 V DC
	Max. thermal uninterrupted current with R300	1 A
	Maximum apparent on/off power with R300	28/28 VA

Transistor outputs

CL-LST, CL-LMT, CL-LET.20DC2

	CL-LST	$\begin{aligned} & \text { CL-LMT, } \\ & \text { CL-LET.20DC2 } \end{aligned}$
Number of outputs	4	8
Contacts	Semiconductors	Semiconductors
Rated voltage $U_{\text {e }}$	24 V DC	24 V DC
Permissible range	20.4 to 28.8 V DC	20.4 to 28.8 V DC
Residual ripple	$\leqq 5 \%$	$\leqq 5 \%$
Supply current		
At state "0"	Normally 9 mA , max. 16 mA	Normally 18 mA , max. 32 mA
At state "1"	Normally 12 mA , max. 22 mA	Normally 24 mA, max. 44 mA
Reverse polarity protection	Yes, Attention! If voltage is applied to the outputs when the polarity of the power supply is reversed, this will result in a short circuit.	
Potential isolation to mains supply, inputs	Yes	Yes
Rated current I_{e} on 1 signal	max. 0.5 A DC	max. 0.5 A DC
Lamp load	5 Watts without R_{V}	5 Watts without R_{V}
Residual current on 0 state per channel	$<0,1 \mathrm{~mA}$	<0,1 mA
Max. output voltage		
On 0 state with ext. load $<10 \mathrm{M} \Omega$	2.5 V	2.5 V
On 1 state, le $=0.5 \mathrm{~A}$	$U=U_{e}-1 \mathrm{~V}$	$U=U_{\mathrm{e}}-1 \mathrm{~V}$
Short-circuit protection	Yes, thermal (analysis via diagnostics input 116, I15; R16, R15)	
Short-circuit tripping current for $R \mathrm{a} \leqq 10 \mathrm{~m} \Omega$	$0,7 \mathrm{~A} \leqq I_{\mathrm{e}} \leqq 2 \mathrm{~A}$ per output	
Max. total short-circuit current	8 A	16 A
Peak short-circuit current	16 A	32 A
Thermal cutout	Yes	Yes

	CL-LST	$\begin{aligned} & \hline \text { CL-LMT, } \\ & \text { CL-LET.20DC2 } \end{aligned}$
Max. switching frequency with constant resistive load $R_{\mathrm{L}}<100 \mathrm{k} \Omega$: operations/hour	40000 (depends on program and load)	
Parallel connection of outputs with resistive load; inductive load with external suppression circuit (see page 53) Combination within a group	Group 1: Q1 to Q4	- Group 1: Q1 to Q4, S1 to S4 - Group 2: Q5 to Q8, S5 to S8
Number of outputs	max. 4	max. 4
Total maximum current	2.0 A, Attention! Outputs must be actuated simultaneously and for the same time duration.	
Status display of the outputs	LCD display (if provided)	

Inductive load (without external suppressor circuit)
General explanations:
$\mathrm{T}_{0.95}=$ time in milliseconds until 95% of the stationary current is reached.
$T_{0,95} \approx 3 \times T_{0,65}=3 \times \frac{L}{R}$
Utilisation category in groups for:

- Q1 to Q4
- Q5 to Q8
- S1 to S4
- S5 to S8

$\begin{aligned} & T_{0.95}=1 \mathrm{~ms} \\ & R=48 \Omega \\ & L=16 \mathrm{mH} \end{aligned}$	Utilization factor		$g=0.25$
	Relative duty factor	\%	100
	Maximum switching frequency $\mathrm{f}=0.5 \mathrm{~Hz}$ Maximum duty factor DF = 50 \%	Operations/h	1500
$\begin{aligned} & \mathrm{DC13} \\ & T_{0.95}=72 \mathrm{~ms} \\ & R=48 \Omega \\ & L=1.15 \mathrm{H} \end{aligned}$	Utilization factor		$g=0.25$
	Relative duty factor	\%	100
	Maximum switching frequency $f=0.5 \mathrm{~Hz}$ Maximum duty factor DF $=50 \%$	Operations/h	1500

Other inductive loads:

$\begin{aligned} & T_{0.95}=15 \mathrm{~ms} \\ & R=48 \Omega \\ & L=0.24 \mathrm{H} \end{aligned}$	Utilization factor		$g=0.25$
	Relative duty factor	\%	100
	Maximum switching frequency $f=0.5 \mathrm{~Hz}$ Maximum duty factor $D F=50 \%$	Operations/h	1500

Inductive loading with external suppressor circuit for each load
(\rightarrow section "Connecting transistor outputs", Page 51)

Utilization factor		$g=1$
Relative duty factor	\%	100
max. operating frequency Max. duty factor	Operations/h	Depending on the suppressor circuit

List of the function relays Usable contacts

Contact type	n／0	n／c	$\begin{aligned} & \text { CL-LSR/ } \\ & \text { CL-LST } \end{aligned}$	$\begin{aligned} & \text { CL-LMR/ } \\ & \text { CL-LMT } \end{aligned}$	Page
Analog value comparator function relay	H	$\stackrel{\square}{17}$		B1．．．．116	98
Counter function relays	$\underline{\square}$	E	E1．．E16	E1．．．E16	111
Text display function relay	\square	$\bar{\square}$	D1．．．016	［1．．．01\％	131
Week time switch function relay	4	0	41．．．配	41．．．配	137
CL input terminal	I	İ		I1．．．112	77
0 signal			I1］	113	
Expansion status			－	114	236
Short－circuit／overload			I16	I15．．．İil	234
Markers，（auxiliary relay）	M	M		M1．．． $\mathrm{M16}$	85
Markers（auxiliary relay）	N	N	N1．．．N16	N1．．．N1G	
Operating hours counter	0	$\overline{\overline{0}}$	$01 . .04$	$01 . .04$	143
Cursor button	F	F	F1．．．F4	F1．．．F4	82
CL output	Q	0	Q1．．．04	Q1．．．0⿴	77
Input terminal for expansion unit	F	\bar{i}	－	F1．．．F12	77
Short－circuit／overload with expansion	F	$\overline{\mathrm{F}}$	－	F15．．．Fib	234
CL output（expansion or auxiliary marker S）	5	5	S1．．．S日 （as marker）		85
Timer function relays	T	\bar{T}	T1．．．Tili	T1．．．Til	148
Jump label	：	－	：1．．．： $\mathrm{B}^{\text {l }}$	：1．．．： B	164
Year time switch	Y	$\bar{\psi}$	V1．．．Y＇	V1．．．YB	167
Master reset，（central reset）	2	$\overline{2}$	Z1．．．Z！	Z1．．．z	174

Available function relays

Relay	CL display	$\begin{aligned} & \text { CL-LSR/ } \\ & \text { CL-LST } \end{aligned}$	$\begin{aligned} & \text { CL-LMR/ } \\ & \text { CL-LMT } \end{aligned}$	Coil function	Parame ters
Analog value comparator function relay	H		71．．．．16	－	\checkmark
Counter function relays	E	W1．．．016	E1．．．I6	\checkmark	\checkmark
Text marker function relay	\square	01．．．01\％	01．．．01\％	\checkmark	\checkmark
Week time switch function relay	4	41．．酔	61．．．48	－	\checkmark
Markers（auxiliary relay）	M	M1．．．M16	M1．．． $\mathrm{M16}$	\checkmark	－
Markers（auxiliary relay）	N	N1．．．N1G	N1．．．N1i	\checkmark	－
Operating hours counter	0	$01 . .04$	01.04	\checkmark	\checkmark
CL output relay	0	Q1．．．04	81．．．88	\checkmark	－
CL output relay expansion， markers	5	S1．．．5日 （as marker）	31．．5日	\checkmark	－
Timer function relays	T	T1．．．T1i		\checkmark	\checkmark
Conditional jump	：	：1．．．： $\mathrm{B}^{\text {c }}$	：1．．．：目	\checkmark	－
Year time switch	Y	Y1．．．V4	V1．．． V^{4}	－	\checkmark
Master reset（central reset）	z	Z1．．．21	Z1．．．z	\checkmark	－

Names of relays

Relay	Meaning of abbreviation	Function relay designation	Page
H	Analog value comparator	Analog value comparator	98
－	counter	Counter	111
\square	display	Text display	131
4	（week，Software）	Week time switch	137
0	operating time	Operating hours counter	143
T	timing relays	Timing relay	148
Y	year	Year time switch	167
z	zero reset，	Master reset	174

Names of function relay

Function relay coil	Meaning of abbreviation	Description
C	count input	Counter input, counter
D	direction input	Counter direction, counter
H	hold, stop	Stopping of timing relay, stop, timing relay
R	reset	Reset of actual value to zero, operating hours counters, counters, text displays, timing relays
T	trigger	Timing coil, timing relay

Name of function block inputs (constants, operands)

Input	Meaning of abbreviation	Description
F1	Factor 1	Gain factor for I1 (11 = F1 × Value)
F2	Factor 2	Gain factor for I2 (I2 = F2 \times Value)
HY	Hysteresis	Switching hysteresis for value 12 (Value HY applies to positive and negative hysteresis.)
D	Day	Day
11	Input 1	1st setpoint, comparison value
12	Input 2	2nd setpoint, comparison value
S	Setpoint	Setpoint, limit value

Compatibility of the The functions of the CL-LSR/CL-LST and CL-LMR/CL-LMT function relay parameters units were extended to integrate the function relays of the AC010 units. The parameter displays were adapted for the additional functions.

Parameter display of analog value comparator

Parameter display of counters

Parameter display 7－day time switch

AC010 parameter	$\begin{aligned} & \text { CL-LSR/CL-LST, } \\ & \text { CL-LMR/CL-LMT } \\ & \text { parameter } \\ &= \mathrm{E} \cdot 1 \end{aligned}$		
		它	F｜t
		0	
Fif－E	$=\mathrm{Al}-\mathrm{EP}$	叫	－＂．me ；－
H	$=\mathrm{H}$	WF＇m	－-m － ：\quad－
W中－－－－－－－	＝明－－－－－		
WFF－－－－－－	＝OFF－－－－－		
＋	$=+$		

Parameter display of timing relay

AC010 parameter	CL－LSR／CL－LST，	
	CL－LMR／CL－LMT parameter	
Ti	$=\mathrm{Ti}$	I 1 Hem．Em
\％	＝ X	I
5	$=\mathrm{s}$	
FH．EE	$=\mathrm{Am} \cdot \mathrm{EE}$	
＋	$=+$	

Compatibility of the memory module

Type of memory module	CL－LSR，CL－LST		CL－LMR，CL－LMT	
	Reading	Writing	Reading	Writing
MD001	\checkmark	－	\checkmark	－
MD002	－	－	\checkmark	－
CL－LAS．MD003	\checkmark	\checkmark	\checkmark	\checkmark

Glossary

Analog input

Circuit diagram elements

Connect mode

Contact behaviour

Decentralized expansion

The CL-AC1, CL-DC1 and CL-DC2 devices are provided with the two (CL-LSR/CL-LST) or four (CL-LMR/CL-LMT) analog inputs $\mathrm{I} 7, \mathrm{I} 8$ and I11, I12. The input voltages are between 0 V and 10 V . The measuring data is evaluated with the integrated function relays.

As in conventional wiring, the circuit diagram is made up of circuit elements. These include input, output and marker relays, plus function relays and P buttons.

Connect mode is used to wire up the circuit elements in your CL circuit diagram.

The contact behaviour of any circuit element can be defined as either a n / c contact or a n/o contact. n / c contact elements are identified by a line above the identifier (Exception: jump).

I/O expansion with the expansion device (e.g. CL-LET.20DC2) is installed up to 30 m away from the basic unit. The CL-LEC.CIO00 coupler is fitted centrally on the basic unit. A two-wire cable is used to exchange the input and output data between the expansion device and the basic unit.

Entry mode is used to input or modify values when creating circuit diagrams or setting parameters, for example.

Function relay

Impulse relay

Input

An impulse relay is a relay which changes its switching state and retains its new state (latched) when a voltage is applied to the relay coil for a short time.

The inputs are used to connect up external contacts. In the circuit diagram, inputs are evaluated via contacts I1 to I12 and R1 to R12.

CL-AC1, CL-DC1 and CL-DC2 can receive additional analog data via the inputs 17,18 and $\mathrm{I} 11, \mathrm{I} 12$.

The CL interface is used to exchange and save circuit diagrams to a memory module or PC.

A memory module stores a circuit diagram and the CL settings.

The CL-SOFT PC software allows you to control the logic relay from the PC. For this the PC and the logic relay are connected via the CL-LAS.TD001 cable.

I/0 expansion with the expansion device (e.g.
CL-LET.20DC2) is installed directly on the basic unit. The connector is always supplied with the expansion unit.

Memory module

Non-volatile data

Operating buttons

Operating mode

Output

Parameter

The memory module is used to store your CL circuit diagram, together with its parameter and CL settings. The data on the memory module will be retained without an external power supply.

The memory module is fitted in the interface provided for it.

See Retention.

The logic relay has eight operating buttons. These are used to select menu functions and create circuit diagrams. The large round button in the middle is used to move the cursor.

DEL, ALT, ESC and OK all perform additional functions.

The logic relay has two operating modes: RUN and STOP. RUN mode is used to process your CL circuit diagram (with the controller running continuously). In STOP mode you can create your circuit diagrams.

You can connect various loads to the logic relay outputs, such as contactors, lamps or and motors. In the circuit diagram the outputs are controlled via the corresponding output relay coils Q1 to Q8 or S1 to S8.

Parameters enable the user to set the behaviour of function relays. The relevant parameters apply for switch times or counter setpoints. They are set in the parameter display.

The P buttons can be used to simulate four additional inputs which are controlled directly by the four cursor buttons, rather than via external contacts. The switching contacts of P buttons are connected up in the circuit diagram.

Power supply

CL-AC1 is powered by AC voltage at 24 VAC . The terminal designations are " L " and " N ".

CL-AC2 is powered by AC voltage at 85 to $264 \mathrm{~V} \mathrm{AC}, 50 / 60$ Hz . The terminals are labelled with " L " and " N ".

CL-DC1 is powered by DC voltage at 12 V DC. The terminals are labelled " +12 V " and " 0 V ".

CL-DC2 is powered by DC voltage at 24 V DC. The terminals are labelled " +24 V " and " 0 V ".

The terminals for the power feed are the first three terminals on the input side.

Retention

Data is retained even after the logic relay power supply is switched off. (retentive data)

The following data is retentive:

- CL circuit diagram
- Parameters, setpoint values
- Texts
- System settings
- Password
- Actual values of marker relays, timing relays, counters (selectable)

Each line in the circuit diagram is a rung. CL-LSR/CL-LST and CL-LMR/CL-LMT can take 128 rungs.

Index

A Accuracy of real-time clock 256
Actual values, deleting retentive 223
Add rung 64
Ambient conditions 254
Analog
Comparing two values 110
Input 41, 275
Input power supply 43
Input, resolution 102
Setpoint potentiometer 44
Signals 42
Value comparator 98
Value comparator parameter compatibility 273
Value comparator, two-step controller 108
Value scaling 133
AND circuit 177
Annual timer 167
Approvals 256
Auxiliary relay 85
B Basic circuit 176
Changeover circuit 180
Latching 181
Negation 176, 177
Parallel circuit 178
Permanent contact 177
Series circuit 177
Button
ALT 64
DEL 64
OK 62, 70
Buttons for circuit diagram processing 69
C Cable cross-sections 31
Cable lengths 37
Cables 31
Change channel
7-day time switch 139
Annual timer 169
Change language 201
Circuit diagram 71
CL function 228
Coil field 75
Contact fields 75
Controlling 84
Creation, troubleshooting 248
Cycle 227
Delete 67
Detection 228
Display 62, 75
Elements 275
Enter 60
Fast entry 67
Grid 62, 75
Internal processing 227
Load 76, 237, 242, 243
Operating buttons 69
Overview 75
Rung 75
Save 76, 237, 240, 241, 243
Testing 65, 84
Wiring 64, 80
Circuit examples 184
CL basic units at a glance 14
Clock backup time 256
Coil 72
Coil field 75
Coil function
Contactor 86
Impulse relay 89
Latching relay 90
Negate 87
Overview 85
Commissioning 57
Comparator functions 98
Comparison
"Equal to" 105
"Greater than/equal to" 106
"Greater than" 107
"Less than/equal to" 104
"Less than" 103
Two analog values 110
Compatibility of parameters 273
Connect mode 275
Connecting
20 mA sensor 46
Alternating voltage 32
Analog inputs 41
Analog setpoint potentiometer 44
Brightness sensor 44, 45
Contactors and relays 48
Cross-sections 31
DC voltage 33
Digital input 40
Expansion 30
Frequency encoder 46
High-speed counters 46
Input 35
Neon bulbs 38
Output 48
Power supply 31
Proximity switches 40
Pushbuttons and switches 40
Relay outputs 49
Setpoint potentiometer 44
Temperature sensor 45
Transistor outputs 51
Connections
Changing 80
Creating 80
Delete 81
Position in the circuit diagram 75
Contact 71
Behaviour 275
Field 75
First 63
List all 270
Contactor function, invert 87
Counter 111, 115, 116, 119
Cascading 117
Component quantities 115
Counter frequency 114
Fast, circuit diagram evaluation 228
High-speed 46, 125
Maintenance 145
Operating time/hours 143
Parameter compatibility 273
Retentive actual value 118
Scan for actual value $=$ zero 117
Counter relay 111
Parameter set 122, 127
Counter value automatic reset 116
Counting unit quantities 115
Current
Increasing input 39
Input 37, 41
Cursor buttons 16, 82
Activating 216
Deactivating 216
See „P buttons" 277
Cursor display 25, 70
Cycle 227
Cycle pulse 87, 88, 182, 183
D Date setting 205
Delay times
for CL-AC1 and CL-AC2 232
for CL-AC1, CL-DC1 and CL-DC2 233
for CL-DC1 and CL-DC2 230
Inputs and outputs 230
Deleting retentive actual values 223
Detecting operating states 109
Device information 225
Device overview 14
Device version 245
Dimensions 251
Display module 244
DST setting 206
E Edge
Evaluate falling 87
Evaluate rising 88
Falling 183
Rising 182
Electromagnetic compatibility (EMC) 255
Entry mode 275
Error handling See „What happens if" 247
Expanding CL-LMR/CL-LMT 235
Expansion 235
Connecting 30
Detecting 235
Local 276
Monitoring 236
Remote 275
Transfer behaviour 235
Expansion units 54
F Fixing brackets 29
Flashing 160
Frequency 119
Frequency counter 119
Function block inputs, list of names 272
Function relays $71,119,131,143,276$
Counter 111
Example 93
High-speed counter 125
Master reset 174
Overview 91
Overview lists 270, 271, 272
Parameter 203
Retention 221
Time switch 137, 167
Timing relays 148
H Hours-run meter 143
I Improper use 11
Impulse relay 89, 182, 276
Input 276
Analog connecting 41
Analog resolution 102
Analog, power supply 43
Connecting 35
Contacts 77
Current 37, 39, 41
Debounce setting 214
Delay time 230
Digital connecting 40
Expanding 54
Response time 235
Technical data 258
Terminals 77
Voltage range 37, 41
Inrush current limitation 39
Inside 227
Installation 27
Insulation resistance 255
Intended users 11
Interface 238, 276
Interference 37
Invert 79
J Jumps 164
K Keypad 16
L Latching 181
Latching relay 90
LED display 19
Line protection 31, 34
List
Contacts 270
Function relays 271
Relays 271
Logic relays at a glance 15
M Main menu
Overview 20
Selecting 17
Maintenance meter 145
Marker 85
Marker relay 229
Marker reset 175
Master reset 174
Memory module 76, 239, 277
delete 242
insert 239
read 242
write 241
Menu
Change language 201
Changing level 62
Guidance 16
Language setting 58
Selecting main menu 17
Selecting system menu 17
Message
INVALID PROG 244, 248
System 247
Mode 277
Change 65
Monitoring expansion 236
Mounting 27
Screwing 29
Top-hat rail 28
N n/c contact $72,73,270$
Invert 79
n/o contact $72,73,270$
Invert 79
NAND circuit 178
Neon bulbs 38
Non-volatile data (retention) 221
NOT circuit 176, 177
0 Operating buttons 69, 277
Operating modes 59
Operation 16, 69, 70
OR circuit 178
Output 277
Connecting 48
Connecting relay 49
Connecting transistor 51
Contacts 77
Delay time 230
Expanding 54
Relay 77
Reset 175
Response time 235
Overload 53
monitoring with CL-LST, CL-LMT, CL-LET 234
Overview 12
P P buttons 277
Activating 216
Activating and deactivating 215
Deactivating 216
See "Cursor buttons" 82
Parameter
Block access 203
Change 202
Change switch time 203
Display 202
Function relay 203
Power flow display 96
Parameter display 70
Timing relay 122, 127
Parameters 277
Compatibility 273
Password
Activate 198
Changing 199
Deactivating, see "Unlock logic relay" 199
Deleting 200
Range 197
Remove protection 200
Set up 196
Password protection 195
Permissible markers and function relays 221
Power flow display 66, 84, 96
Power supply 31, 278
Analog input 43
Technical data 257
Program 70
Proper use 11
Pulse shaping 159
R Real-time clock, accuracy 256
Real-time clock, backup time 256
Reed relay contacts 38
Relay coil
Changing 78
Coil function 78, 85
Delete 79
Enter 65
Entering 78
Relays 71, 77
Connecting output 49
Contactor function 86
Impulse 89
List all 271
Name 78
Negate 87
Number 78
Output, technical data 265
Overview 74
Reset 90
Set 90
Timing 148
Reset 90
Markers 175
Master 174
Reset counter value manually 115
Response time input/output 235
Retention 221, 278
Memory 256
Retentive behaviourSetting222
Transferring 223
Transferring the circuit diagram 224
RUN, start behaviour 59
RUN/STOP switching 65
Rung 278
Add new 64
Delete 82
Insert 82
Running light 190
S Scaling 133
Screw mounting 29
Sensor (20 mA)
Connecting 46
Set 90
Setpoints 203
Setting summer time rule 207
Setting the cycle time 220
Settings 195
Shift register 186
Short-circuit 53
monitoring with CL-LST, CL-LMT, CL-LET 234
Signals, analog 42
Stairwell lighting 191
Star-delta starting 184
Startup behaviour 217, 219
After deleting circuit diagram 218
Basic setting 218, 220
Memory module 219
Possible faults 218
Setting 217
Upload/download to memory module or PC 218
Status display 17, 18
Status image register 228
Statusanzeige 18
Supply voltage
Alternating voltage 32
Analog input 43
DC voltage 33
Switching contact 79
Changing 78
Contact number 78
Contacting 78
Cursor buttons 82
Delete 79
Entering 78
Invert 64
Overview 72
Switching on 57
System menu selection 17
T Technical data 254
General 254
Inputs 258
Power supply 257
Relay output 265
Transistor output 267
Terminals 31
Text display 131
Threshold switch 98
Tightening torque 31
Time setting 205
Time switch 137
7-day 137
Annual 167
Change channel 139, 169
Examples 140
Timing relays 148
Flashing 160
Off-delayed 155
On- and off-delayed 157
On-delayed 154
Operating modes 151
Parameter compatibility 274
Pulse shaping 159
Time range 151
Top-hat rail 28
Transfer behaviour expansion 235
Transfer cable 243
Transistor output, technical data 267
Troubleshooting
During circuit diagram creation 248
With result 250
Two-step controller 108
Two-wire proximity switches 39
U Unlocking 199
V Value entry 16
Voltage range, Input 41
Voltage range, input 37, 41
W Week time switch Parameter compatibility 274
Weekday setting 205
What happens if 247
Wiring 69
Backwards 229
Delete 64
Enter 64
Wiring rules 86
X XOR circuit 180

ABB STOTZ-KONTAKT GmbH

Electrification Products Division
Low Voltage Products and Systems
Eppelheimer Strasse 82
69123 Heidelberg, Germany

We reserve the right to make technica changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB Ltd. does not accept any responsibility whatsoever for potentia errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB Ltd. Copyright© 2018 ABB Ltd. All rights reserved

[^0]: SECURITY
 SYETEM. .
 LFINGUGE
 COHFIGURATOE

[^1]: \rightarrow
 If the value of the variable is greater than the maximum permissible value of the configured time range, the maximum value of the time range will be used as the setpoint.

